Biomarker Discovery by Novel Sensors Based on Nanoproteomics Approaches

Sensors - Tập 12 Số 2 - Trang 2284-2308
Noelia Dasilva1, Paula Díez1, Sergio Matarraz1, María González‐González1, Sara Sánchez Paradinas2, Alberto Órfão1, Manuel Fuentes1
1Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain
2Departamento de Química Analítica, Facultad de Ciencias Químicas, University of Salamanca, Salamanca 37008, Spain

Tóm tắt

During the last years, proteomics has facilitated biomarker discovery by coupling high-throughput techniques with novel nanosensors. In the present review, we focus on the study of label-based and label-free detection systems, as well as nanotechnology approaches, indicating their advantages and applications in biomarker discovery. In addition, several disease biomarkers are shown in order to display the clinical importance of the improvement of sensitivity and selectivity by using nanoproteomics approaches as novel sensors.

Từ khóa


Tài liệu tham khảo

Wong, 2009, Advanced proteomic technologies for cancer biomarker discovery, Expert Rev. Proteomics, 6, 123, 10.1586/epr.09.1

Madu, 2010, Novel diagnostic biomarkers for prostate cancer, J. Cancer, 1, 150, 10.7150/jca.1.150

Rakowska, 2011, Nano-enabled biomarker discovery and detection, Biomark. Med, 5, 387, 10.2217/bmm.11.26

Matarraz, 2011, Nanotechniques in proteomics: Protein microarrays and novel detection platforms, Eur. J. Pharm. Sci, 45, 499

Matarraz, 2011, New Technologies in cancer. Protein microarrays for biomarker discovery, Clin. Transl. Oncol, 13, 156, 10.1007/s12094-011-0635-8

Xia, H., Murray, K., Soper, S., and Feng, J. (2011). Ultra sensitive affinity chromatography on avidin-functionalized PMMA microchip for low abundant post-translational modified protein enrichment. Biomed. Microdevices.

Chandra, 2011, Protein microarrays and novel detection platforms, Expert Rev. Proteomics, 8, 61, 10.1586/epr.10.99

Ray, 2011, Emerging nanoproteomics approaches for disease biomarker detection: A current perspective, J. Proteomics, 74, 2660, 10.1016/j.jprot.2011.04.027

Tomizaki, 2010, Protein-protein interactions and selection: Array-based techniques for screening disease-associated biomarkers in predictive/early diagnosis, FEBS J, 277, 1996, 10.1111/j.1742-4658.2010.07626.x

LaBaer, 2005, Protein microarrays as tools for functional proteomics, Curr. Opin. Chem. Biol, 9, 14, 10.1016/j.cbpa.2004.12.006

Hu, 2006, Microarray: A versatile platform for high-throughput functional proteomics, Comb. Chem. High Throughput Screen, 9, 203, 10.2174/138620706776055467

Grasso, 2006, Nanostructuring of a porous alumina matrix for a biomolecular microarray, Nanotechnology, 17, 795, 10.1088/0957-4484/17/3/030

Collings, 2008, Novel technologies for the discovery and quantitation of biomarkers of toxicity, Toxicology, 245, 167, 10.1016/j.tox.2007.11.020

Meany, 2009, Glycoproteomics for prostate cancer detection: Changes in serum PSA glycosylation patterns, J. Proteome Res, 8, 613, 10.1021/pr8007539

Srivastava, 2006, Serum proteomic signature for cystic fibrosis using an antibody microarray platform, Mol. Genet. Metab, 87, 303, 10.1016/j.ymgme.2005.10.021

Zhou, 2004, Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements, Genome Biol, 5, R28, 10.1186/gb-2004-5-4-r28

Wu, 2009, Antibody array analysis with label-based detection and resolution of protein size, Mol. Cell. Proteomics, 8, 245, 10.1074/mcp.M800171-MCP200

Blazer, L.L., Roman, D.L., Muxlow, M.R., and Neubig, R.R. (2010). Use of flow cytometric methods to quantify protein-protein interactions. Curr. Protoc. Cytom.

Harsha, 2008, Quantitative proteomics using stable isotope labeling with amino acids in cell culture, Nat. Protoc, 3, 505, 10.1038/nprot.2008.2

Everley, 2004, Quantitative cancer proteomics: Stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research, Mol. Cell. Proteomics, 3, 729, 10.1074/mcp.M400021-MCP200

Waanders, 2007, Top-down quantitation and characterization of SILAC-labeled proteins, J. Am. Soc. Mass Spectrom, 18, 2058, 10.1016/j.jasms.2007.09.001

Zhu, W., Smith, J.W., and Huang, C.M. (2010). Mass spectrometry-based label-free quantitative proteomics. J. Biomed. Biotechnol.

Kodoyianni, 2011, Label-free analysis of biomolecular interactions using SPR imaging, BioTechniques, 50, 32, 10.2144/000113569

Stern, 2010, Label-free biomarker detection from whole blood, Nat. Nanotechnol, 5, 138, 10.1038/nnano.2009.353

Umehara, 2009, Label-free biosensing with functionalized nanopipette probes, Proc. Natl. Acad. Sci. USA, 106, 4611, 10.1073/pnas.0900306106

Lin, 2011, A label-free immunosensor based on modified mesoporous silica for simultaneous determination of tumor markers, Biosens. Bioelectron, 29, 40, 10.1016/j.bios.2011.07.063

Chikkaveeraiah, 2011, Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum, Biosens. Bioelectron, 26, 4477, 10.1016/j.bios.2011.05.005

Nicolini, 2010, Nanoproteomics for nanomedicine, Nanomedicine (Lond.), 5, 677, 10.2217/nnm.10.46

Nicolini, 2011, Matrices for sensors from inorganic, organic, and biological nanocomposites, Materials, 4, 1483, 10.3390/ma4081483

Maccioni, 1996, Bacteriorhodopsin thin film as a sensitive layer for an anaesthetic sensor, Thin Solid Films, 284–285, 898, 10.1016/S0040-6090(95)08474-6

Paternolli, 2007, Nanostructuring of heme-proteins for biodevice applications, IET Nanobiotechnol, 1, 22, 10.1049/iet-nbt:20060020

Paternolli, 2009, Photoreversibility and photostability in films of octopus rhodopsin isolated from octopus photoreceptor membranes, J. Biomed. Mater. Res. A, 88, 947, 10.1002/jbm.a.31925

Nicolini, 2010, An overview of nanotechnology-based functional proteomics for cancer and cell cycle progression, Anticancer Res, 30, 2073

Nicolini, C., and LaBaer, J. (2010). Functional Proteomics & Nanotechnology-Based Microarrays, Pan Stanford Series on Nanobiotechnology. Chapters 1–12,.

Ramachandran, 2005, Emerging tools for real-time label-free detection of interactions on functional protein microarrays, FEBS J, 272, 5412, 10.1111/j.1742-4658.2005.04971.x

Torreri, 2005, Biomolecular interactions by surface plasmon resonance technology, Ann. Ist. Super. Sanita, 41, 437

Ladd, 2009, Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging, Anal. Bioanal. Chem, 393, 1157, 10.1007/s00216-008-2448-3

Zhang, 2009, Recent advances in nanotechnology applied to biosensors, Sensors, 9, 1033, 10.3390/s90201033

Zahavy, 2010, Surface effects in water-soluble shell-core hybrid gold nanoparticles in oligonucleotide single strand recognition for sequence-specific bioactivation, Langmuir, 26, 16442, 10.1021/la101375j

Bao, 2006, Detection of protein analytes via nanoparticle-based bio bar code technology, Anal. Chem, 78, 2055, 10.1021/ac051798d

Wagner, 2010, Use of quantum dots in the development of assays for cancer biomarkers, Anal. Bioanal Chem, 397, 3213, 10.1007/s00216-010-3847-9

Yezhelyev, 2007, In situ molecular profiling of breast cancer biomarkers with multicolor quantum dots, Adv. Mater, 19, 3146, 10.1002/adma.200701983

Sinha, 2005, Carbon nanotubes for biomedical applications, IEE Trans. Nanobiosci, 4, 180, 10.1109/TNB.2005.850478

Malhotra, 2010, Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification, Anal. Chem, 82, 3118, 10.1021/ac902802b

Wang, 2005, Carbon-nanotube based electrochemical biosensors: A review, Electroanalysis, 17, 7, 10.1002/elan.200403113

Cerasoli, 2010, MiS-MALDI: Microgel-selected detection of protein biomarkers by MALDI-ToF mass spectrometry, Mol. Biosyst, 6, 2214, 10.1039/c0mb00073f

Luchini, 2008, Smart hydrogel particles: Biomarker harvesting: One-step affinity purification, size exclusion, and protection against degradation, Nano Lett, 8, 350, 10.1021/nl072174l

Stura, 2007, Anodic porous alumina as mechanical stability enhancer for LDL-cholesterol sensitive electrodes, Biosens. Bioelectron, 23, 655, 10.1016/j.bios.2007.07.011

Bavastrello, 2004, Poly(2,5-dimethylaniline)-MWNTs nanocomposite: A new material for conductometric acid vapours sensor, Sens. Actuat. B Chem, 98, 247, 10.1016/j.snb.2003.10.020

Jokerst, 2009, Nano-bio-chips for high performance multiplexed protein detection: determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels, Biosens. Bioelectron, 24, 3622, 10.1016/j.bios.2009.05.026

Makridakis, 2010, Secretome proteomics for discovery of cancer biomarkers, J. Proteomics, 73, 2291, 10.1016/j.jprot.2010.07.001

Goo, 2010, Advances in proteomic prostate cancer biomarker discovery, J. Proteomics, 73, 1839, 10.1016/j.jprot.2010.04.002

Misek, D.E., and Kim, E.H. (2011). Protein biomarkers for the early detection of breast cancer. Int. J. Proteomics.

Zhang, 2006, Biomarker discovery for ovarian cancer using SELDI-TOF-MS, Gynecol. Oncol, 102, 61, 10.1016/j.ygyno.2005.11.029

Gold, 2006, New MUC1 serum immunoassay differentiates pancreatic cancer from pancreatitis, J. Clin. Oncol, 24, 252, 10.1200/JCO.2005.02.8282

Buxbaum, 2010, Molecular and clinical markers of pancreas cancer, JOP, 11, 536

Hueber, 2006, Proteomic biomarkers for autoimmune disease, Proteomics, 6, 4100, 10.1002/pmic.200600017

Krenn, 2004, Array technology and proteomics in autoimmune diseases, Pathol. Res. Pract, 200, 95, 10.1016/j.prp.2004.02.005

Pinto, 2008, Polymorphisms in genes encoding tumor necrosis factor-alpha and HLA-DRB1 are not associated with response to infliximab in patients with rheumatoid arthritis, J. Rheumatol, 35, 177

Lee, S., Serada, S., Fujimoto, M., and Naka, T. Application of Novel Quantitative Proteomic Technologies to Identify New Serological Biomarkers in Autoimmune Diseases. Available online: http://www.intechopen.com/source/pdfs/20669/InTechApplication_of_novel_quantitative_proteomic_technologies_to_identify_new_serological_biomarkers_in_autoimmune_diseases.pdf (accessed on 1 December 2011).

Li, 2005, Identification of autoantibody clusters that best predict lupus disease activity using glomerular proteome arrays, J. Clin. Invest, 115, 3428, 10.1172/JCI23587

Drouvalakis, 2008, Peptide-coated nanotube-based biosensor for the detection of disease-specific autoantibodies in human serum, Biosens. Bioelectron, 23, 1413, 10.1016/j.bios.2007.11.022

Chen, 2008, Protein microarrays with carbon nanotubes as multicolor raman labels, Nat. Biotechnol, 26, 1285, 10.1038/nbt.1501

Carlsson, A., Wuttge, D.M., Ingvarsson, J., Bengtsson, A.A., Sturfelt, G., Borrebaeck, C.A., and Wingren, C. (2011). Serum protein profiling of systemic lupus erythematosus and systemic sclerosis using recombinant antibody microarrays. Mol. Cell. Proteomics.

Bell, 2012, Characterization of the mycobacterium tuberculosis proteome by liquid chromatography mass spectrometry-based proteomics techniques: A comprehensive resource for tuberculosis research, J. Proteome Res, 11, 119, 10.1021/pr2007939

Liu, 2011, Proteomic profiling of hepatitis B virus-related hepatocellular carcinoma with magnetic bead-based matrix-assisted Laser desorption/ionization time-of-flight mass spectrometry, Acta Biochim. Biophys. Sin. (Shanghai), 43, 542, 10.1093/abbs/gmr044

Gaudieri, 2011, Biomarkers that reflect immune activation or dysfunction will be important in the management of infectious diseases, Biomark. Med, 5, 109, 10.2217/bmm.11.22

Hauck, 2010, Nanotechnology diagnostics for infectious diseases prevalent in developing countries, Adv. Drug Deliv. Rev, 62, 438, 10.1016/j.addr.2009.11.015

Agranoff, 2006, Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum, Lancet, 368, 1012, 10.1016/S0140-6736(06)69342-2

Gupta, 2010, Alpha1-acid glycoprotein as a putative biomarker for monitoring the development of the type II reactional stage of leprosy, J. Med. Microbiol, 59, 400, 10.1099/jmm.0.016394-0

Tang, 2009, Detection of anthrax toxin by an ultrasensitive immunoassay using europium nanoparticles, Clin. Vaccine Immunol, 16, 408, 10.1128/CVI.00412-08

Lee, 2009, An integrated microfluidic system for rapid diagnosis of dengue virus infection, Biosens. Bioelectron, 25, 745, 10.1016/j.bios.2009.08.020

Oliver, 2011, The search for biomarkers of immune restoration disease associated with mycobacterium tuberculosis in HIV patients beginning antiretroviral therapy, Biomark. Med, 5, 149, 10.2217/bmm.11.16

Sanchez, 2004, Cystatin C as a potential cerebrospinal fluid marker for the diagnosis of creutzfeldt-jakob disease, Proteomics, 4, 2229, 10.1002/pmic.200300799

Mabbott, 2000, Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie, Nat. Med, 6, 719, 10.1038/77401

Ray, 2011, Proteomic technologies for the identification of disease biomarkers in serum: Advances and challenges ahead, Proteomics, 11, 2139, 10.1002/pmic.201000460

Kim, 2007, Proteome analysis of serum from type 2 diabetics with nephropathy, J. Proteome Res, 6, 735, 10.1021/pr060489g

Pickup, 2008, Nanomedicine and its potential in diabetes research and practice, Diabetes Metab. Res. Rev, 24, 604, 10.1002/dmrr.893

Cash, 2010, Nanosensors and nanomaterials for monitoring glucose in diabetes, Trends Mol. Med, 16, 584, 10.1016/j.molmed.2010.08.002