Semi-analytical solution for three-dimensional vibration of functionally graded circular plates

Computer Methods in Applied Mechanics and Engineering - Tập 196 - Trang 4901-4910 - 2007
G.J. Nie1, Z. Zhong2
1School of Aerospace-Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, China
2School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

Tài liệu tham khảo

Wu, 1996, Piezoelectric ceramics with functional gradients: a new application in material design, J. Am. Ceram. Soc., 79, 809, 10.1111/j.1151-2916.1996.tb07951.x Zhu, 1996, Operational principle, fabrication and displacement characteristics of a functionally gradient piezoelectric ceramic actuator, Sensors Actuators A, 48, 169, 10.1016/0924-4247(95)00996-5 Yang, 2001, Dynamic response of initially stressed functionally graded rectangular thin plates, Compos. Struct., 54, 497, 10.1016/S0263-8223(01)00122-2 Vel, 2004, Three-dimensional exact solution for the vibration of functionally graded rectangular plates, J. Sound Vib., 272, 703, 10.1016/S0022-460X(03)00412-7 Kitipornchai, 2004, Semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric imperfections, Int. J. Solids Struct., 41, 2235, 10.1016/j.ijsolstr.2003.12.019 Chen, 2005, Nonlinear vibration of a shear deformable functionally graded plate, Compos. Struct., 68, 295, 10.1016/j.compstruct.2004.03.022 Roque, 2006, A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory, J. Sound Vib., 1, 1 Serge, 2006, Free vibration, buckling, and static deflections of functionally graded plates, Compos. Sci. Technol., 66, 2383, 10.1016/j.compscitech.2006.02.032 Ferreira, 2006, Natural frequencies of functionally graded plates by a meshless method, Compos. Struct., 75, 593, 10.1016/j.compstruct.2006.04.018 Woo, 2006, Nonlinear free vibration behavior of functionally graded plates, J. Sound Vib., 289, 595, 10.1016/j.jsv.2005.02.031 Park, 2006, Thermal postbuckling and vibration analyses of functionally graded plates, J. Sound Vib., 289, 77, 10.1016/j.jsv.2005.01.031 Prakash, 2006, Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method, Composites: Part B, 37, 642, 10.1016/j.compositesb.2006.03.005 Efraim, 2007, Exact vibration analysis of variable thickness thick annular isotropic and FGM plates, J. Sound Vib., 299, 720, 10.1016/j.jsv.2006.06.068 Lee, 1996, Exact electroelastic analysis of piezoelectric laminae via state space approach, Int. J. Solids Struct., 33, 977, 10.1016/0020-7683(95)00083-6 Zhong, 2003, Three-dimensional exact analysis of a simplify supported functionally graded piezoelectric plate, Int. J. Solids Struct., 40, 5335, 10.1016/S0020-7683(03)00288-9 Karami, 2002, A new differential quadrature methodology for beam analysis and the associated differential quadrature element method, Comput. Methods Appl. Mech. Engrg., 191, 3509, 10.1016/S0045-7825(02)00289-X Liew, 2003, Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method, Comput. Methods Appl. Mech. Engrg., 192, 2203, 10.1016/S0045-7825(03)00238-X Fung, 2002, Stability and accuracy of differential quadrature method in solving dynamic problems, Comput. Methods Appl. Mech. Engrg., 191, 1311, 10.1016/S0045-7825(01)00324-3 Bert, 1996, The differential quadrature method in computational mechanics: a review, Appl. Mech. Rev., 49, 1, 10.1115/1.3101882 Wang, 2004, Free vibration analyses of thin sector plates by the new version of differential quadrature method, Comput. Methods Appl. Mech. Engrg., 193, 3957, 10.1016/j.cma.2004.02.010 Gu, 1997, Crack in functionally graded materials, Int. J. Solids Struct., 34, 1, 10.1016/0020-7683(95)00289-8 Gantmacher, 1960 Liu, 2000, Finite element analysis of three-dimensional vibrations of thick circular and annular plates, J. Sound Vib., 233, 63, 10.1006/jsvi.1999.2791