Semi-analytical solution for three-dimensional vibration of functionally graded circular plates
Tài liệu tham khảo
Wu, 1996, Piezoelectric ceramics with functional gradients: a new application in material design, J. Am. Ceram. Soc., 79, 809, 10.1111/j.1151-2916.1996.tb07951.x
Zhu, 1996, Operational principle, fabrication and displacement characteristics of a functionally gradient piezoelectric ceramic actuator, Sensors Actuators A, 48, 169, 10.1016/0924-4247(95)00996-5
Yang, 2001, Dynamic response of initially stressed functionally graded rectangular thin plates, Compos. Struct., 54, 497, 10.1016/S0263-8223(01)00122-2
Vel, 2004, Three-dimensional exact solution for the vibration of functionally graded rectangular plates, J. Sound Vib., 272, 703, 10.1016/S0022-460X(03)00412-7
Kitipornchai, 2004, Semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric imperfections, Int. J. Solids Struct., 41, 2235, 10.1016/j.ijsolstr.2003.12.019
Chen, 2005, Nonlinear vibration of a shear deformable functionally graded plate, Compos. Struct., 68, 295, 10.1016/j.compstruct.2004.03.022
Roque, 2006, A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory, J. Sound Vib., 1, 1
Serge, 2006, Free vibration, buckling, and static deflections of functionally graded plates, Compos. Sci. Technol., 66, 2383, 10.1016/j.compscitech.2006.02.032
Ferreira, 2006, Natural frequencies of functionally graded plates by a meshless method, Compos. Struct., 75, 593, 10.1016/j.compstruct.2006.04.018
Woo, 2006, Nonlinear free vibration behavior of functionally graded plates, J. Sound Vib., 289, 595, 10.1016/j.jsv.2005.02.031
Park, 2006, Thermal postbuckling and vibration analyses of functionally graded plates, J. Sound Vib., 289, 77, 10.1016/j.jsv.2005.01.031
Prakash, 2006, Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method, Composites: Part B, 37, 642, 10.1016/j.compositesb.2006.03.005
Efraim, 2007, Exact vibration analysis of variable thickness thick annular isotropic and FGM plates, J. Sound Vib., 299, 720, 10.1016/j.jsv.2006.06.068
Lee, 1996, Exact electroelastic analysis of piezoelectric laminae via state space approach, Int. J. Solids Struct., 33, 977, 10.1016/0020-7683(95)00083-6
Zhong, 2003, Three-dimensional exact analysis of a simplify supported functionally graded piezoelectric plate, Int. J. Solids Struct., 40, 5335, 10.1016/S0020-7683(03)00288-9
Karami, 2002, A new differential quadrature methodology for beam analysis and the associated differential quadrature element method, Comput. Methods Appl. Mech. Engrg., 191, 3509, 10.1016/S0045-7825(02)00289-X
Liew, 2003, Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method, Comput. Methods Appl. Mech. Engrg., 192, 2203, 10.1016/S0045-7825(03)00238-X
Fung, 2002, Stability and accuracy of differential quadrature method in solving dynamic problems, Comput. Methods Appl. Mech. Engrg., 191, 1311, 10.1016/S0045-7825(01)00324-3
Bert, 1996, The differential quadrature method in computational mechanics: a review, Appl. Mech. Rev., 49, 1, 10.1115/1.3101882
Wang, 2004, Free vibration analyses of thin sector plates by the new version of differential quadrature method, Comput. Methods Appl. Mech. Engrg., 193, 3957, 10.1016/j.cma.2004.02.010
Gu, 1997, Crack in functionally graded materials, Int. J. Solids Struct., 34, 1, 10.1016/0020-7683(95)00289-8
Gantmacher, 1960
Liu, 2000, Finite element analysis of three-dimensional vibrations of thick circular and annular plates, J. Sound Vib., 233, 63, 10.1006/jsvi.1999.2791