Effects of laser shock processing on mechanical properties of Fe–Ni alloy

Materials & Design - Tập 30 - Trang 3673-3678 - 2009
J.Z. Lu1, L. Zhang1, A.X. Feng1, Y.F. Jiang1, G.G. Cheng1
1Jiangsu Provincial Key Laboratory for Science and Technology of Photon Manufacturing, School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013, PR China

Tài liệu tham khảo

Rubio-González, 2004, Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy, Mater Sci Eng A, 386, 291, 10.1016/j.msea.2004.07.025 Chen, 2001, Modeling schemes, transiency, and strain measurement for microscale laser shock processing, J Manuf Process, 3, 128, 10.1016/S1526-6125(01)70128-4 Luo, 2008, Growth mechanism and characterization of zno 3d nanocrystals by laser irradiation and coaxially transporting O2, J Wuhan Univ Technol (Mater Sci Ed), 24, 783, 10.1007/s11595-007-6783-6 Yang, 2001, Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stop holes, Mater Sci Eng A, 298, 296, 10.1016/S0921-5093(00)01277-6 Zhang, 1998, Laser shock processing of 2024-T62 aluminum alloy, Mater Sci Eng A, 257, 322, 10.1016/S0921-5093(98)00793-X Tsay, 2003, Fatigue crack growth behavior of laser-processed 304 stainless steel in air and gaseous hydrogen, Corr Sci, 45, 1985, 10.1016/S0010-938X(03)00036-2 Rankin, 2003, The effects of process variations on residual stress in laser peened 7049 T73 aluminum alloy, Mater Sci Eng A, 349, 279, 10.1016/S0921-5093(02)00811-0 Peyre, 1995, Laser shock processing: a review of the physics and applications, Opt Quantum Electron, 27, 1213 Zhang, 1997, Laser shock-processing for fatigue and fracture resistance, Sci Chin (Ser E), 40, 170, 10.1007/BF02916949 Zhang, 1997, Study of visual inspection and control methods of effectiveness of laser shock-processing, Appl Phys A, 65, 419, 10.1007/s003390050602 Zhang, 1997, Investigation of surface qualities of laser shock-processes zones and the effect on the fatigue life of aluminum alloy, Surface Coatings Tech, 92, 104, 10.1016/S0257-8972(97)00009-1 Zhang, 2006, Study of mechanism of overlay acting on laser shock waves, J Appl Phys, 100, 103517-1, 10.1063/1.2364037 Zhang, 2001, Mechanism of improvement on fatigue life of metal by laser-excited shock waves, Appl Phys A, 72, 113, 10.1007/s003390000533 Long, 2008, Corrosion behavior of Fe-based ferromagnetic (Fe, Ni)–B–Si–Nb bulk glassy alloys in aqueous electrolytes, J Non-Cryst Solids, 354, 4609, 10.1016/j.jnoncrysol.2008.06.009 Li, 2008, Temperature-dependent mechanical behavior of a nanostructured Ni–Fe alloy, Mater Sci Eng A, 493, 93, 10.1016/j.msea.2007.08.085 Nedjad, 2009, Effect of aging on the microstructure and tensile properties of Fe–Ni–Mn–Cr maraging alloys, Mater Sci Eng A, 501, 182, 10.1016/j.msea.2008.09.062 Vourlias, 2008, Reinforcement of Al–Fe–Ni alloys with the in situ formation of composite materials, J Alloys Compd Li, 2008, Temperature-dependent mechanical behavior of a nanostructured Ni–Fe alloy, Mater Sci Eng A, 493, 93, 10.1016/j.msea.2007.08.085 Han, 2008, Grain refinement under multi-axial forging in Fe-32%Ni alloy, J Alloys Compd, 457, 279, 10.1016/j.jallcom.2007.03.067 Warren, 2008, Massive parallel laser shock peening: simulation, analysis, and validation, Int J Fatigue, 30, 97, 10.1016/j.ijfatigue.2007.01.033 Montross, 2002, Laser shock processing and its effects on microstructure and properties of metal alloys: a review, Int J Fatigue, 24, 1021, 10.1016/S0142-1123(02)00022-1 Dong, 2003, Determination of hardness and Young’s modulus of brush plated Nano-Al2O3/Ni composite coating by nanoindentation testing, Surf Eng, 19, 195, 10.1179/026708403225006168 Volinsky, 2003, Nanoindentation techniques for assessing mechanical reliability at the nanoscale, Microelectron Eng, 69, 519, 10.1016/S0167-9317(03)00341-1 Yilbas, 2007, Laser shock processing of aluminium: model and experimental study, J Phys D Appl Phys, 40, 6740, 10.1088/0022-3727/40/21/038 Zhang, 2004, Microscale laser shock peening of thin films, part 2: high spatial resolution material characterization, J Manuf Sci Eng, 126, 18, 10.1115/1.1645879 Peyre, 1996, Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour, Mater Sci Eng A, 210, 102, 10.1016/0921-5093(95)10084-9 San, 2006, Nano-hardness and wear properties of C-implanted Nylon 6, Surf Coat Tech, 200, 5245, 10.1016/j.surfcoat.2005.06.027 Ballard, 1991, Residual stresses induced by laser shock treatment, J Phys, C3, 235 Schino, 2003, Grain size dependence of the fatigue behaviour of a ultrafine-grained AISI 304 stainless steel, Mater Lett, 57, 3182, 10.1016/S0167-577X(03)00021-1 Roland, 2006, Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment, Scr Mater, 54, 1949, 10.1016/j.scriptamat.2006.01.049 James, 2007, Residual stresses and fatigue performance, Eng Fail Anal, 14, 384, 10.1016/j.engfailanal.2006.02.011 Martinez, 2005, Effects of fretting fatigue on the residual stress of shot peened Ti-6Al-4V samples, Mater Sci Eng A, 399, 58, 10.1016/j.msea.2005.02.028 Banaś, 1990, Laser shock-induced mechanical and microstructural modification of welded maraging steel, J Appl Phys, 67, 2380, 10.1063/1.345534 Fabbro, 1990, Physical study of laser-produced plasma in confined geometry, J Appl Phys, 68, 775, 10.1063/1.346783 Banas, 1990, Laser shock-induced mechanical and microstructural modification of welded maraging steel, J Appl Phys, 67, 2380, 10.1063/1.345534 Chien, 2005, Fatigue analysis of crankshaft sections under bending with consideration of residual stresses, Int J Fatigue, 27, 1, 10.1016/j.ijfatigue.2004.06.009 Farrahi, 1995, Effect of shot peening on residual stress and fatigue life of spring steel, Fatigue Fract Eng Mater Struct, 18, 211, 10.1111/j.1460-2695.1995.tb00156.x Guagliano, 2004, An approach for prediction of fatigue strength of shot peened components, Eng Fract Mech, 71, 501, 10.1016/S0013-7944(03)00017-1 Wang, 1998, Compressive residual stress introduced by shot peening, J Mater Process Technol, 73, 64, 10.1016/S0924-0136(97)00213-6