Effects of laser shock processing on mechanical properties of Fe–Ni alloy
Tài liệu tham khảo
Rubio-González, 2004, Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy, Mater Sci Eng A, 386, 291, 10.1016/j.msea.2004.07.025
Chen, 2001, Modeling schemes, transiency, and strain measurement for microscale laser shock processing, J Manuf Process, 3, 128, 10.1016/S1526-6125(01)70128-4
Luo, 2008, Growth mechanism and characterization of zno 3d nanocrystals by laser irradiation and coaxially transporting O2, J Wuhan Univ Technol (Mater Sci Ed), 24, 783, 10.1007/s11595-007-6783-6
Yang, 2001, Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stop holes, Mater Sci Eng A, 298, 296, 10.1016/S0921-5093(00)01277-6
Zhang, 1998, Laser shock processing of 2024-T62 aluminum alloy, Mater Sci Eng A, 257, 322, 10.1016/S0921-5093(98)00793-X
Tsay, 2003, Fatigue crack growth behavior of laser-processed 304 stainless steel in air and gaseous hydrogen, Corr Sci, 45, 1985, 10.1016/S0010-938X(03)00036-2
Rankin, 2003, The effects of process variations on residual stress in laser peened 7049 T73 aluminum alloy, Mater Sci Eng A, 349, 279, 10.1016/S0921-5093(02)00811-0
Peyre, 1995, Laser shock processing: a review of the physics and applications, Opt Quantum Electron, 27, 1213
Zhang, 1997, Laser shock-processing for fatigue and fracture resistance, Sci Chin (Ser E), 40, 170, 10.1007/BF02916949
Zhang, 1997, Study of visual inspection and control methods of effectiveness of laser shock-processing, Appl Phys A, 65, 419, 10.1007/s003390050602
Zhang, 1997, Investigation of surface qualities of laser shock-processes zones and the effect on the fatigue life of aluminum alloy, Surface Coatings Tech, 92, 104, 10.1016/S0257-8972(97)00009-1
Zhang, 2006, Study of mechanism of overlay acting on laser shock waves, J Appl Phys, 100, 103517-1, 10.1063/1.2364037
Zhang, 2001, Mechanism of improvement on fatigue life of metal by laser-excited shock waves, Appl Phys A, 72, 113, 10.1007/s003390000533
Long, 2008, Corrosion behavior of Fe-based ferromagnetic (Fe, Ni)–B–Si–Nb bulk glassy alloys in aqueous electrolytes, J Non-Cryst Solids, 354, 4609, 10.1016/j.jnoncrysol.2008.06.009
Li, 2008, Temperature-dependent mechanical behavior of a nanostructured Ni–Fe alloy, Mater Sci Eng A, 493, 93, 10.1016/j.msea.2007.08.085
Nedjad, 2009, Effect of aging on the microstructure and tensile properties of Fe–Ni–Mn–Cr maraging alloys, Mater Sci Eng A, 501, 182, 10.1016/j.msea.2008.09.062
Vourlias, 2008, Reinforcement of Al–Fe–Ni alloys with the in situ formation of composite materials, J Alloys Compd
Li, 2008, Temperature-dependent mechanical behavior of a nanostructured Ni–Fe alloy, Mater Sci Eng A, 493, 93, 10.1016/j.msea.2007.08.085
Han, 2008, Grain refinement under multi-axial forging in Fe-32%Ni alloy, J Alloys Compd, 457, 279, 10.1016/j.jallcom.2007.03.067
Warren, 2008, Massive parallel laser shock peening: simulation, analysis, and validation, Int J Fatigue, 30, 97, 10.1016/j.ijfatigue.2007.01.033
Montross, 2002, Laser shock processing and its effects on microstructure and properties of metal alloys: a review, Int J Fatigue, 24, 1021, 10.1016/S0142-1123(02)00022-1
Dong, 2003, Determination of hardness and Young’s modulus of brush plated Nano-Al2O3/Ni composite coating by nanoindentation testing, Surf Eng, 19, 195, 10.1179/026708403225006168
Volinsky, 2003, Nanoindentation techniques for assessing mechanical reliability at the nanoscale, Microelectron Eng, 69, 519, 10.1016/S0167-9317(03)00341-1
Yilbas, 2007, Laser shock processing of aluminium: model and experimental study, J Phys D Appl Phys, 40, 6740, 10.1088/0022-3727/40/21/038
Zhang, 2004, Microscale laser shock peening of thin films, part 2: high spatial resolution material characterization, J Manuf Sci Eng, 126, 18, 10.1115/1.1645879
Peyre, 1996, Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour, Mater Sci Eng A, 210, 102, 10.1016/0921-5093(95)10084-9
San, 2006, Nano-hardness and wear properties of C-implanted Nylon 6, Surf Coat Tech, 200, 5245, 10.1016/j.surfcoat.2005.06.027
Ballard, 1991, Residual stresses induced by laser shock treatment, J Phys, C3, 235
Schino, 2003, Grain size dependence of the fatigue behaviour of a ultrafine-grained AISI 304 stainless steel, Mater Lett, 57, 3182, 10.1016/S0167-577X(03)00021-1
Roland, 2006, Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment, Scr Mater, 54, 1949, 10.1016/j.scriptamat.2006.01.049
James, 2007, Residual stresses and fatigue performance, Eng Fail Anal, 14, 384, 10.1016/j.engfailanal.2006.02.011
Martinez, 2005, Effects of fretting fatigue on the residual stress of shot peened Ti-6Al-4V samples, Mater Sci Eng A, 399, 58, 10.1016/j.msea.2005.02.028
Banaś, 1990, Laser shock-induced mechanical and microstructural modification of welded maraging steel, J Appl Phys, 67, 2380, 10.1063/1.345534
Fabbro, 1990, Physical study of laser-produced plasma in confined geometry, J Appl Phys, 68, 775, 10.1063/1.346783
Banas, 1990, Laser shock-induced mechanical and microstructural modification of welded maraging steel, J Appl Phys, 67, 2380, 10.1063/1.345534
Chien, 2005, Fatigue analysis of crankshaft sections under bending with consideration of residual stresses, Int J Fatigue, 27, 1, 10.1016/j.ijfatigue.2004.06.009
Farrahi, 1995, Effect of shot peening on residual stress and fatigue life of spring steel, Fatigue Fract Eng Mater Struct, 18, 211, 10.1111/j.1460-2695.1995.tb00156.x
Guagliano, 2004, An approach for prediction of fatigue strength of shot peened components, Eng Fract Mech, 71, 501, 10.1016/S0013-7944(03)00017-1
Wang, 1998, Compressive residual stress introduced by shot peening, J Mater Process Technol, 73, 64, 10.1016/S0924-0136(97)00213-6