Jacquet functors and unrefined minimal K-types

Commentarii Mathematici Helvetici - Tập 71 Số 1 - Trang 98-121 - 1996
Moy, Allen1, Prasad, Gopal1
1Department of Mathematics, University of Michigan, Ann Arbor, USA

Tóm tắt

The notion of an unrefined minimal K-type is extended to an arbitrary reductive group over a non archimedean local field. This allows one to define the depth of a representation. The relationship between unrefined minimal K-types and the functors of Jacquet is determined. Analogues of fundamental results of Borel are proved for representations of depth zero.

Tài liệu tham khảo

citation_journal_title=Russian Math. Surveys; citation_title=Representations of the group GL(n,F) where F is a non-archimedean local field; citation_author=J. Bernstein, A. Zelevinsky; citation_volume=31; citation_issue=3; citation_publication_date=1976; citation_pages=1-68; citation_doi=10.1070/RM1976v031n03ABEH001532; citation_id=CR1 citation_journal_title=Invent. Math.; citation_title=Admissible representations of a semisimple group over a local field with vectors fixed under an Iwahori subgroup; citation_author=A. Borel; citation_volume=35; citation_publication_date=1976; citation_pages=233-259; citation_doi=10.1007/BF01390139; citation_id=CR2 [B2]A. Borel,Linear algebraic groups, Graduate Texts in Mathematics, Springer-Verlag, 1991. [BT1]F. Bruhat andJ. Tits,Groupes réductifs sur un corps local I, Publ. Math. I.H.E.S.41 (1972). [BT2]F. Bruhat andJ. Tits,Groupes réductifs sur un corps local II, Publ. Math. I.H.E.S.60 (1984). [BK1]C. Bushnell andP. Kutzko,The admissible dual of GL(N) via compact open subgroups, Princeton University Press, 1993. [BK2]C. Bushnell andP. Kutzko,Smooth representations of reductive p-adic groups (preprint). [Car]P. Cartier,Representations of p-adic groups: A survey, Proc. of A.M.S. Symposia in Pure Math. XXXIII (part 1), 111–155. [Cas]W. Casselman,Introduction to the theory of admissible representations of p-adic reductive groups (preprint). citation_title=Eisenstein series over finite fields; citation_publication_date=1984; citation_id=CR10; citation_author=null Harish-Chandra; citation_publisher=Springer-Verlag citation_journal_title=Jour. of Algebra; citation_title=On Harish-Chandra induction and restriction for modules of Levi subgroups; citation_author=R. Howlett, G. Lehrer; citation_volume=165; citation_publication_date=1994; citation_pages=172-183; citation_doi=10.1006/jabr.1994.1104; citation_id=CR11 citation_journal_title=Ann. Math.; citation_title=Instability in invariant theory; citation_author=G. Kempf; citation_volume=108; citation_publication_date=1978; citation_pages=299-316; citation_doi=10.2307/1971168; citation_id=CR12 citation_journal_title=Proc. LMS (3rd series); citation_title=P-cuspidal representations of level one; citation_author=L. Morris; citation_volume=58; citation_publication_date=1989; citation_pages=550-558; citation_id=CR13 citation_journal_title=Invent Math.; citation_title=Tamely ramified intertwining algebras; citation_author=L. Morris; citation_volume=114; citation_publication_date=1993; citation_pages=1-54; citation_doi=10.1007/BF01232662; citation_id=CR14 citation_journal_title=Invent. Math.; citation_title=Unrefined minimal K-types for p-adic groups; citation_author=A. Moy, G. Prasad; citation_volume=116; citation_publication_date=1994; citation_pages=393-408; citation_doi=10.1007/BF01231566; citation_id=CR15 citation_journal_title=C. R. Acad. Sci. (Paris); citation_title=Immeubles spheriques et theorie des invariants; citation_author=G. Rousseau; citation_volume=286; citation_publication_date=1978; citation_pages=A247-A250; citation_id=CR16 citation_journal_title=Jour. Math. Soc. Japan; citation_title=On certain square integrable unitary representations of some p-adic linear groups; citation_author=T. Shintani; citation_volume=20; citation_publication_date=1968; citation_pages=522-565; citation_doi=10.2969/jmsj/02030522; citation_id=CR17 citation_title=Introduction to harmonic analysis on reductive p-adic groups; citation_publication_date=1979; citation_id=CR18; citation_author=A. Silberger; citation_publisher=Princeton University Press [T]J. Tits,Reductive groups over local fields, Proc. of A.M.S. Symposia in Pure Math. XXXIII (part 1), 29–69.