A System of High-Order Fractional Differential Equations with Integral Boundary Conditions
Tóm tắt
The existence of a solution for a system of two nonlinear high-order fractional differential equations including the Atangana-Baleanu-Caputo derivative with integral boundary conditions, is proved. Simultaneously, we discuss the existence of a solution by applying the Schauder fixed point theorem and a generalized Darbo fixed point theorem, which involves the concept of measure of noncompactness. The paper also contains some examples that illustrate the application of the main result.
Tài liệu tham khảo
AlAhmad, R., AlAhmad, Q., Abdelhadi, A.: Solution of fractional autonomous ordinary differential equations. J. Math. Comput. Sci. 27(1), 59–64 (2022)
Abdeljawad, T., Agarwal, R.P., Karapınar, E., Kumari, P.S.: Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 11(5), 686 (2019)
Abdeljawad, T., Baleanu, D.: Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels. Adv. Differ Equ. 232, 1–18 (2016)
Abdeljawad, T.: Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel. J. Inequal. Appl. 1, 1–11 (2017)
Abdolrazaghi, F., Razani, A.: A unique weak solution for a kind of coupled system of fractional Schrodinger equations. Opusc. Math. 40(3), 313–322 (2020)
Abdo, M.S., Panchal, S.K.: Fractional integro-differential equations involving \(\Psi\) -Hilfer fractional derivative. Adv. Appl. Math. Mech. 11(2), 338–359 (2019)
Abdo, M.S., et al.: On fractional boundary value problems involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions. Adv Differ Equ. 2021(1), 1–21 (2021)
Agarwal, R., Meehan, M., O’regan, D.: Fixed point theory and applications. Cambridge University Press, Cambridge (2004). p. 141
Aghajani, A., Allahyari, R., Mursaleen, M.: A generalization of Darbos theorem with application to the solvability of systems of integral equations. J. Comput. Appl. Math. 260, 68–77 (2014)
Aghajani, A., O’Regan, D., Shole Haghighi, A.: Measures of noncompactness on \(L^{p}({\mathbb{R} }^{n})\) and applications. CUBO A Math J 17(1), 85–97 (2015)
Ahmad, B., Ntouyas, S.K.: A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Fract. Calc. Appl. Anal. 17(2), 348–360 (2014)
Ahmad, B., Ntouyas, S.K., Alsaedi, A.: Sequential fractional differential equations and inclusions with semi-periodic and nonlocal integro-multipoint boundary conditions. J. King Saud Univ-Sci 31(2), 184–193 (2019)
Alkahtani, B.S.T., Koca, I., Atangana, A.: Analysis of a new model of HINI spread: model obtained via Mittag-Leffler function. Adv Mech Eng. 9(8), 1–8 (2017)
Allahyari, R., Arab, R., Shole Haghighi, A.: Measure of noncompactness in a Sobolev space and integro-differential equations. Bull. Aust. Math. Soc 3, 497–506 (2016)
Alqahtani, B., Aydi, H., Karapınar, E., Rakocevi, V.: A solution for Volterra fractional integral equations by hybrid contractions. Mathematics 7(8), 694 (2019)
Arab, R., Allahyari, R., Shole Haghighi, A.: Construction of measures of noncompactness of \(C^ k (Omega)\) and \(C^ k_0\) and their application to functional integral-differential equations.". Bull Iran Math Soc 43(1), 53–67 (2017)
Atangana, A., Baleanu, D.: Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer. J Eng Mech. 143(5), 1–5 (2017)
Atangana, A., Baleanu, D.: New fractional derivative with non-local and non-singular kernel. Theory and application to heat transfer model. Therm. Sci. 20(2), 1–7 (2016)
Abdullah, T.Q.S., Xiao, H., Huang, G., Al-Sadi, W.: Stability and existence results for a system of fractional differential equations via Atangana-Baleanu derivative with\(\phi _{p}\)-Laplacian operator. J. Math. Comput. SC. 27(2), 184–195 (2022)
Bokhari, A., Baleanu, D., Belgacem, R.: Application of Shehu transform to Atangana-Baleanu derivatives. J. Math. Comput. SC. 20(2), 101–107 (2020)
Banaś, J., Goebel, K.: Measures of noncompactness in Banach spaces. Lecture notes in pure and applied mathematics, p. 60. Dekker, New York (1980)
Banaś, J.: On measures of noncompactness in Banach spaces. Commentationes Mathematicae Universitatis Carolinae. 21(1), 131–143 (1980)
Behboudi, F., Razani, A., Oveisiha, M.: Existence of a mountain pass solution for a nonlocal fractional (p, q)-Laplacian problem. Bound. Value Probl. 2020, 149 (2020)
Benchohra, M., Bouriah, S., Nieto, J.J.: Terminal value problem for differential equations with Hilfer-Katugampola fractional derivative. Symmetry 11(5), 672 (2019)
Functional analysis, Sobolev spaces and partial differentialequations. Springer, New York. (2011)
Can, N.H., Jafari, H., Ncube, M.N.: Fractional calculus in data fitting. Alexandria Eng J. 59(5), 3269–3274 (2020)
Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 73–85 (2015)
Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Ann Geophys. 19(4), 383–393 (1966)
Dadkhah, E., Shiri, B., Ghaffarzadeh, H., Baleanu, D.: Visco-elastic dampers in structural buildings and numerical solution with spline collocation methods. J Appl Math Comput. 63(1), 29–57 (2020)
Darbo, G.: Punti uniti in trasformazioni a codominio non compatto. Rendiconti del Seminario matematico della Universitá di Padova. 24, 84–92 (1955)
Fallahgoul, H.A., Focardi, S.M., Fabozzi, F.J.: Fractional calculus and fractional processes with applications to financial economics. Theory and application. Elsevier Academic Press, London (2017)
Gómez-Aguilar, J.F., Atangana, A., Morales-Delgado, N., Fabian, V.: Electrical circuits RC, LC and RL described by Atangana-Baleanu fractional derivatives. Int J Circt Theory Appl. 45(11), 1514–33 (2017)
Golbabai, A., Nikan, O., Molavai Arabshai, M.: Numerical approximation of time fractional advection-dispersion model arising from solute transport in rivers. TWMS J. Pure Appl. Math. 10(1), 1–17 (2019)
Hadamard, J.: Essai sur l’étude des fonctions, données par leur développement de Taylor. J. Mat. Pure Appl. 8, 101–186 (1892)
Henderson, J., Luca, R., Tudorache, A.: On a system of fractional differential equations with coupled integral boundary conditions. Fract. Calc. Appl. Anal. 18, 361–386 (2015)
Jajarmi, A., Baleanu, D.: On the fractional optimal control problems with a general derivative operator. Asian J Control. 23(2), 1062–1071 (2021)
Karapınar, E., Abdeljawad, T., Jarad, F.: Applying new fixed point theorems on fractional and ordinary differential equations. Adv. Differ. Equ. 421, 1–25 (2019)
Keten, A., Yavuz, M., Baleanu, D.: Nonlocal Cauchy problem via a fractional operator involving power Kernel in Banach Spaces. Fractal Fract. 3(2), 27 (2019)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. North-Holland mathematics studies, p. 204. Elsevier, Amsterdam (2006)
Mehmood, N., et al.: Existence results for ABC-fractional differential equations with non-separated and integral type of boundary conditions. Fractals. 29(5), 2140016 (2021)
Mei, Z.D., Peng, J.G., Gao, J.H.: Existence and uniqueness of solutions for nonlinear general fractional differential equations in Banach spaces. Indag. Math. 26(4), 669–678 (2015)
Niu, H., Chen, Y.: Why do big data and machine learning entail the fractional dynamics. Entropy 23(3), 297 (2021)
Nikan, O., Molavi-Arabshai, S.M., Jafari, H.: Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete Contin. Dyn. Syst. S 14(10), 3685–3701 (2021)
Nyamoradi, N., Razani, A.: Existence to fractional critical equation with Hardy-Littlewood Sobolev nonlinearities. Acta Math Sci. 41(4), 1321–1332 (2021)
Oderinu, R.A., Owolabi, J., Taiwo, M.: Approximate solutions of linear time-fractional differential equations. J. Math. Comput. Sci. 29(1), 60–72 (2023)
Podlubn, I.: Fractional Differential Equations. Academic Press, San Diego-London (1999)
Prasad, R., Kumar, K., Dohare, R.: Caputo fractional order derivative model of Zika virus transmission dynamics. J. Math. Comput. Sci. 28(2), 145–157 (2023)
Sabatier, J., Agrawal, R.P., Machado, J.T.: Advances in fractional calculus. Theoretical developments and applications in physics and engineering. Springer, Dordrecht. 4(9 )(2007)
Saiedinezhad, S.: On a measure of noncompactness in the Holder space \(C^{k,\gamma }(\Omega )\) and its application. J Comput Appl Math 346, 566–571 (2019)
Schauder, J.: Der Fixpunktsatz in funktionalraümen. Studia math. 2(1), 171–180 (1930)
Srivastava, H.M.: Remarks on some families of fractional-order differential equations. Integral Transforms Spec. Funct. 28(7), 560–564 (2017)
Sutar, S.T., Kucche, K.D.: Existence and data dependence results for fractional differential equations involving atangana-baleanu derivative. Rendiconti del Circolo Matematico di Palermo Series. 71(2), 647–663 (2022)
Weyl, H.: Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung. Zurich. Naturf. Ges. 62(1–2), 296–302 (1917)