Manipulating optical vortices using integrated photonics

Frontiers of Optoelectronics - Tập 9 - Trang 194-205 - 2016
Ning Zhang1, Kenan Cicek1, Jiangbo Zhu1, Shimao Li2, Huanlu Li3, Marc Sorel3, Xinlun Cai2, Siyuan Yu1,2
1Photonics Group, University of Bristol, Bristol, UK
2State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
3School of Engineering, University of Glasgow, Glasgow, UK

Tóm tắt

Optical vortices (OVs) refer to a class of cylindrical optical modes with azimuthally varying phase terms arising either from polarization rotation or from the angular projection of the wave vector that at the quantum level corresponds to photon spin or orbital angular momenta. OVs have attracted the attention of researchers in many areas of optics and photonics, as their potential applications range from optical communications, optical manipulation, imaging, sensing, to quantum information. In recent years, integrated photonics has becomes an effective method of manipulating OVs. In this paper, the theoretical framework and experimental progress of integrated photonics for the manipulation of OVs were reviewed.

Tài liệu tham khảo

Poynting J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 1909, 82(557): 560–567 Beth R A. Mechanical detection and measurement of the angular momentum of light. Physical Review, 1936, 50(2): 115–125 Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 1992, 45(11): 8185–8189 Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496 Bozinovic N, Yue Y, Ren Y, TurM, Kristensen P, Huang H, Willner A E, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545–1548 Wang J, Liu J, Lv X, Zhu L, Wang D, Li S, Wang A, Zhao Y, Long Y, Du J, Hu X, Zhou N, Chen S, Fang L, Zhang F. Ultra-high 435-bit/s/Hz spectral efficiency using N-dimentional multiplexing and modulation link with pol-muxed 52 orbital angular momentum (OAM) modes carrying Nyquist 32-QAM signals. In: Proceedings of European Conference on Optical Communication (ECOC), 2015 Shu J, Chen Z, Pu J, Zhu J, Liu D. Tight focusing of partially coherent and radiallly polarized vortex beams. Optics Communications, 2013, 295(10): 5–10 Edfors O, Johansson A J. Is orbital angular momentum (OAM) based radio communication an unexploited area? IEEE Transactions on Antennas & Propagation, 2012, 60(2): 1126–1131 Brunet C, Vaity P, Messaddeq Y, La Rochelle S, Rusch L A. Design, fabrication and validation of an OAM fiber supporting 36 states. Optics Express, 2014, 22(21): 26117–26127 Ung B, Vaity P, Wang L, Messaddeq Y, Rusch L A, La Rochelle S. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes. Optics Express, 2014, 22(15): 18044–18055 Padgett M J, Allen L. The angular momentum of light: optical spanners and the rotational frequency shift. Optical and Quantum Electronics, 1999, 31(1): 1–12 Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C. Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Physical Review Letters, 2015, 114(5): 050502-1–050502-5 Han Y J, Liao G Q, Chen L M, Li Y T, Wang W M, Zhang J. Highorder optical vortex harmonics generated by relativistic femtosecond laser pulse. Chinese Physics B, 2015, 24(6): 065202 Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448–5456 Heckenberg N R, McDuff R, Smith C P, White A G. Generation of optical phase singularities by computer-generated holograms. Optics Letters, 1992, 17(3): 221–223 Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P. Helical-wavefront laser beams produced with a spiral phaseplate. Optics Communications, 1994, 112(5-6): 321–327 Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 2006, 96(16): 163905-1–163905-4 Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Optics Letters, 2002, 27(21): 1875–1877 Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337 Snyder A W, Love J D. Optical Waveguide Theory. Berlin: Springer, 1983, 12(3): 1–37 Wu C, Makino T, Glinski J, Maciejko R, Najafi S I. Self-consistent coupled-wave theory for circular gratings on planar dielectric waveguides. Journal of Lightwave Technology, 1991, 9(10): 1264–1277 Jordan R H, Hall D G, King O, Wicks G, Rishton S. Lasing behavior of circular grating surface-emitting semiconductor lasers. Journal of the Optical Society of America B, 1997, 14(2): 449–453 Barlow G F, Shore A, Turnbull G A, Samuel I. Design and analysis of a low-threshold polymer circular-grating distributed-feedback laser. Journal of the Optical Society of America B, 2004, 21(12): 2142–2150 Scheuer J, Green W M, De Rose G A, Yariv A. Lasing from a circular Bragg nanocavity with an ultrasmall modal volume. Applied Physics Letters, 2005, 86(25): 251101-1–251101-3 Scheuer J, Green W M, Derose G A, Yariv A. InGaAsP annular Bragg lasers: theory, applications, and modal properties. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(2): 476–484 Doerr C R, Buhl L L. Circular grating coupler for creating focused azimuthally and radially polarized beams. Optics Letters, 2011, 36(7): 1209–1211 Scheuer J. Radial Bragg lasers: optimal design for minimal threshold levels and enhanced mode discrimination. Journal of the Optical Society of America B, 2007, 24(9): 2178–2184 Liang G, Liang H, Zhang Y, Li L, Davies A G, Linfield E, Yu S F, Liu H C, Wang Q J. Low divergence single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers. Optics Express, 2013, 21(26): 31872–31882 Fujita M, Baba T. Microgear laser. Applied Physics Letters, 2002, 80(12): 2051–2053 Zhang Z, Dainese M, Wosinski L, Qiu M. Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling. Optics Express, 2008, 16(7): 4621–4630 Arbabi A, Goddard L L. Grating assisted mode coupling in microring resonators. In: Proceedings of IEEE Photonics Conference (IPC)., 2013, 434–435 Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G, Yu S. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363–366 Greene P L, Hall D G. Effects of radiation on circular-grating DFB lasers I. coupled-mode equations. IEEE Journal of Quantum Electronics, 2001, 37(3): 353–364 Huy K P, Morand A, Amans D, Benech P. Analytical study of the whispering-gallery mode in two-dimensional microgear cavity using coupled-mode theory. Journal of the Optical Society of America B, 2005, 22(8): 1793–1803 Sun X, Yariv A. Modal properties and modal control in vertically emitting annular Bragg lasers. Optics Express, 2007, 15(25): 17323–17333 Fujita M, Baba T. Proposal and finite-difference time-domain simulation of whispering gallery mode microgear cavity. IEEE Journal of Quantum Electronics, 2001, 37(10): 1253–1258 Zhu J, Cai X, Chen Y, Yu S. Theoretical model for angular gratingbased integrated optical vortex beam emitters. Optics Letters, 2013, 38(8): 1343–1345 Yu S, Cai X, Zhang N. High index contrast integrated optics in the cylindrical coordinate. In: Proceeding of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2015 Streifer W, Scifres D R, Burnham R D. Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and Waveguides-I. IEEE Journal of Quantum Electronics, 1976, 12(7): 422–428 Streifer W, Burnham R D, Scifres D R. Analysis of grating-coupled radiation in GaAs: GaAIAs lasers and waveguides II. blazing effects. IEEE Journal of Quantum Electronics, 1976, 12(8): 494–499 Streifer W, Scifres D R, Burnham R D. Coupled wave analysis of DFB and DBR lasers. IEEE Journal of Quantum Electronics, 1977, 13(4): 134–141 Hardy A, Welch D F, Streifer W. Analysis of second-order gratings. IEEE Journal of Quantum Electronics, 1989, 25(10): 2096–2105 Watson G N. A treatise on the theory of Bessel functions. Nature, 1945, (3955):190–191 Strain M J, Cai X, Wang J, Zhu J, Phillips D B, Chen L, Lopez-Garcia M, O’Brien J L, Thompson M G, Sorel M, Yu S. Fast electrical switching of orbital angular momentum modes using ultracompact integrated vortex emitters. Nature Communications, 2014, 5: 4856 Liu J, Li S, Zhu L, Klitis C, Chen Y, Wang A, Li S, Long Y, Zheng S, Chen S, Sorel M. Demonstration of few mode fiber transmission link seeded by a silicon photonic integrated optical vortex emitter. In: Proceeding of European Conference on Optical Communication (ECOC), 2015 Moreno I, Davis J A, Ruiz I, Cottrell D M. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Optics Express, 2010, 18(7): 7173–7183 Zhu J, Chen Y, Zhang Y, Cai X, Yu S. Spin and orbital angular momentum and their conversion in cylindrical vector vortices. Optics Letters, 2014, 39(15): 4435–4438 Xiao Q S, Klitis C, Li S M, Chen Y Y, Cai X L, Sorel M, Yu S Y. Generation of photonic orbital angular momentum superposition states using vortex beam emitters with superimposed gratings. Optics Express, 2016, 24(4): 3168–3176 Li H, Phillips D B, Wang X, Ho Y L, Chen L, Zhou X, Zhu J, Yu S, Cai X. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica, 2015, 2(6): 547–552