Adaptive particle image velocimetry based on sharpness metrics

M. Teich1, J. Grottke1, H. Radner1, L. Büttner1, J. W. Czarske1
1Technische Universität Dresden, Faculty of Electrical and Computer Engineering, Laboratory for Measurement and Sensor System Techniques, Dresden, Germany

Tóm tắt

Optical distortions can significantly deteriorate the measurement accuracy in particle image velocimetry systems. Such distortions can occur at fluctuating phase boundaries during flow measurement and result from the accompanied refractive index changes. The usage of a wavefront sensor can be hindered by disturbing light reflexes or scattering. A combination of sharpness metric image evaluation and iterative optimization is demonstrated. The sharpness metric is used as an indicator for wavefront aberrations in order to correct low-order Zernike modes that influence the image quality of particle image velocimetry. In this work we outline a sharpness metric based aberration correction with a deformable mirror, applied for the first time to particle image velocimetry. The proposed method allows for the reduction of systematic measurement uncertainties in particle image velocimetry. Our approach offers a new way to reduce static or slowly changing wavefront distortions in a fluid flow measurement setup in which a wavefront sensor is not applicable.

Tài liệu tham khảo

Hardy, J.W.: Active optics: a new technology for the control of light. In: Proceedings of the IEEE, vol. 66, pp. 651–697 (1978) Fernandez, E., Artal, P.: Membrane deformable mirror for adaptive optics: performance limits in visual optics. Opt. Express. 11, 1056–1069 (2003) Booth, M.: Adaptive optics in microscopy. In: Optical and Digital Image Processing: Fundamentals and Applications, pp. 295–321. Wiley-VCH Verlag, Weinheim (2011) Yoo, H.W., Van Royen, M.E., Van Cappellen, W.A., Houtsmuller, A.B., Verhaegen, M., Schitter, G.: Automated spherical aberration correction in scanning confocal microscopy. Rev. Sci. Instrum. 85, 123706 (2014) Dong, S., Haist, T., Osten, W.: Hybrid wavefront sensor for the fast detection of wavefront disturbances. Appl. Opt. 51, 6268–6274 (2012) Haber, A., Polo, A., Smith, C.S., Pereira, S.F., Urbach, P., Verhaegen, M.: Iterative learning control of a membrane deformable mirror for optimal wavefront correction. Appl. Opt. 52, 2363–2373 (2013) Xie, Y., Zhang, W., Tao, D., Hu, W., Qu, Y., Wang, H.: Removing turbulence effect via hybrid total variation and deformation-guided kernel regression. IEEE Trans. Image Process. 25, 4943–4958 (2016) Kulcsár, C., Raynaud, H.-F., Petit, C., Conan, J.-M.: Minimum variance prediction and control for adaptive optics. Automatica. 48, 1939–1954 (2012) Koukourakis, N., Fregin, B., König, J., Büttner, L., Czarske, J.W.: Wavefront shaping for imaging-based flow velocity measurements through distortions using a Fresnel guide star. Opt. Express. 24(19), 22074–22087 (2016) Bourgenot, C., Saunter, C.D., Love, G.D., Girkin, J.M.: Comparison of closed loop and sensorless adaptive optics in widefield optical microscopy. J. Eur. Opt. Soc. 8, 13027 (2013) Booth, M.: Wavefront sensor-less adaptive optics: a model-based approach using sphere packings. Opt. Express. 14, 1339–1352 (2006) Booth, M.J.: Wavefront sensorless adaptive optics for large aberrations. Opt. Lett. 32, 5–7 (2007) Debarre, D., Booth, M.J., Wilson, T.: Image based adaptive optics through optimisation of low spatial frequencies. Opt. Express. 15, 8176–8190 (2007) Burke, D., Patton, B., Huang, F., Bewersdorf, J., Booth, M.J.: Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy. Optica. 2, 177–185 (2015) Warber, M., Maier, S., Haist, T., Osten, W.: Combination of scene-based and stochastic measurement for wide-field aberration correction in microscopic imaging. Appl. Opt. 49, 5474–5479 (2010) Antonello, J., Verhaegen, M., Fraanje, R., van Werkhoven, T., Gerritsen, H.C., Keller, C.U.: Semidefinite programming for model-based sensorless adaptive optics. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 29, 2428–2438 (2012) Thielicke, W., Stamhuis, E.J.: PIVlab - towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2, e30 (2014) Murray, L.P.: Smart Optics: Wavefront Sensor-less Adaptive Optics-Image Correction through Sharpness Maximisation (2006) Facomprez, A., Beaurepaire, E., Débarre, D.: Accuracy of correction in modal sensorless adaptive optics. Opt. Express. 20, 2598 (2012) Doble, N.: Image Sharpness Metrics and Search Strategies for Indirect Adaptive Optics, Durham Theses. Durham University, Durham (2000) Muller, R.A., Buffington, A.: Through image sharpening. J. Opt. Soc. Am. 64, 1200–1210 (1974) Fienup, J.R., Miller, J.J.: Aberration correction by maximizing generalized sharpness metrics. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20, 609–620 (2003) Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder--Mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147 (1998) Noll, R.J.: Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am. 66, 207 (1976) Mendelsohn, M.L., Hungerford, D.A., Mayall, B.H., Perrv, B., Conway, T., Prewitt, J.M.S.: Computer-oriented analysis of human chromosomes. II. integrated optical density as a single parameter for karyotype analysis. Ann. N. Y. Acad. Sci. 376–392 (1969) Ferzli, R., Karam, L.J.: A no reference objective sharpness metric using riemannian tensor. In: IEEE 3rd International Workshop on Video Processing and Quality Metrics for Consumer Electronics (2007) Büttner, L., Leithold, C., Czarske, J.: Interferometric velocity measurements through a fluctuating gas-liquid interface employing adaptive optics. Opt. Express. 21, 30653–30663 (2013) Radner, H., Büttner, L., Czarske, J.: Interferometric velocity measurements through a fluctuating phase boundary using two Fresnel guide stars. Opt. Lett. 40, 3766–3769 (2015)