Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment
Tài liệu tham khảo
Abou-Shanab, 2003, Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale, New Phytol., 158, 219, 10.1046/j.1469-8137.2003.00721.x
Adriano, 2001
Antosiewicz, 2005, Study of calcium-dependent lead-tolerance on plants differing in their level of Ca-deficiency tolerance, Environ. Pollut., 134, 23, 10.1016/j.envpol.2004.07.019
Assunção, 2001, Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens, Plant Cell Environ., 24, 217, 10.1111/j.1365-3040.2001.00666.x
Assunção, 2006, Construction of a genetic linkage map of Thlaspi caerulescens and quantitative trait loci analysis of zinc accumulation, New Phytol., 170, 21, 10.1111/j.1469-8137.2005.01631.x
Assunção, 2003, A cosegregation analysis of zinc (Zn) accumulation and Zn tolerance in the Zn hyperaccumulator Thlaspi caerulescens, New Phytol., 159, 383, 10.1046/j.1469-8137.2003.00758.x
Audet, 2008, Allocation plasticity and plant-metal partitioning: meta-analytical perspectives in phytoremediation, Environ. Pollut., 156, 290, 10.1016/j.envpol.2008.02.010
Awazuhara, 2005, The function of SULTR2:1 sulfate transporter during seed development in Arabidopsis thaliana, Physiol. Plant., 125, 95, 10.1111/j.1399-3054.2005.00543.x
Baker, 1978, Ecophysiological aspects of zinc tolerance in Silene maritima With, New Phytol., 80, 635, 10.1111/j.1469-8137.1978.tb01596.x
Baker, 1981, Accumulators and excluders—strategies in the response of plants to heavy metals, J. Plant Nutr., 3, 1, 10.1080/01904168109362867
Baker, 1989, Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry, Biorecovery, 1, 81
Basic, 2006, Cadmium hyperaccumulation and genetic differentiation of Thlaspi caerulescens populations, Biochem. Syst. Ecol., 34, 667, 10.1016/j.bse.2006.04.001
Becher, 2004, Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri, Plant J., 37, 251, 10.1046/j.1365-313X.2003.01959.x
Berglund, 1994, Nicotinamide, a missing link in the early stress response in eukaryotic cells: a hypothesis with special reference to oxidative stress in plants, FEBS Lett., 351, 145, 10.1016/0014-5793(94)00850-7
Bernard, 2004, A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens, FEBS Lett., 569, 140, 10.1016/j.febslet.2004.05.036
Bert, 2002, Do Arabidopsis halleri from non metallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations?, New Phytol., 155, 47, 10.1046/j.1469-8137.2002.00432.x
Bert, 2003, Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri, Plant Soil, 249, 9, 10.1023/A:1022580325301
Besnard, 2009, Thlaspi caerulescens (Brassicaceae) population genetics in western Switzerland: is the genetic structure affected by natural variation of soil heavy metal concentrations?, New Phytol., 181, 974, 10.1111/j.1469-8137.2008.02706.x
Bonner, 2005, Molecular basis of cysteine biosynthesis in plants. Structural and functional analysis of O-acetylserine sulfhydrilase from Arabidopsis thaliana, J. Biol. Chem., 280, 38803, 10.1074/jbc.M505313200
Boyd, 2009, High-nickel insects and nickel hyperaccumulator plants: a review, Insect Sci., 16, 19, 10.1111/j.1744-7917.2009.00250.x
Chiang, 2006, Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray, Environ. Sci. Technol., 40, 6792, 10.1021/es061432y
Clemens, 2006, Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants, Biochimie, 88, 1707, 10.1016/j.biochi.2006.07.003
Cobbett, 2002, Phytochelatins and metallothioneins: role in heavy metal detoxification and homeostasis, Annu. Rev. Plant Biol., 53, 159, 10.1146/annurev.arplant.53.100301.135154
Connolly, 2002, Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation, Plant Cell, 14, 1347, 10.1105/tpc.001263
Courbot, 2007, A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase, Plant Physiol., 144, 1052, 10.1104/pp.106.095133
Curie, 2003, Iron transport and signaling in plants, Annu. Rev. Plant Biol., 54, 183, 10.1146/annurev.arplant.54.031902.135018
Curie, 2001, Maize yellow stripe 1 encodes a membrane protein directly involved in Fe(III) uptake, Nature, 409, 346, 10.1038/35053080
Dechamps, 2008, Root allocation in metal-rich patch by Thlaspi caerulescens from normal and metalliferous soil—new insights into the rhizobox approach, Plant Soil, 310, 211, 10.1007/s11104-008-9648-7
Deniau, 2006, QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens, Theor. Appl. Genet., 113, 907, 10.1007/s00122-006-0350-y
Dickinson, 2005, Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail, Environ. Int., 31, 609, 10.1016/j.envint.2004.10.013
Dickinson, 2009, Phytoremediation of inroganics: realism and synergies, Int. J. Phytorem., 11, 97, 10.1080/15226510802378368
Dräger, 2004, Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels, Plant J., 39, 425, 10.1111/j.1365-313X.2004.02143.x
Eapen, 2005, Prospects of genetic engineering of plants for phytoremediation of toxic metals, Biotechnol. Adv., 23, 97, 10.1016/j.biotechadv.2004.10.001
Eide, 1996, A novel iron-regulated metal transporter from plants identified by functional expression in yeast, Proc. Natl. Acad. Sci. U.S.A., 93, 5624, 10.1073/pnas.93.11.5624
Filatov, 2006, Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation, Mol. Ecol., 15, 3045, 10.1111/j.1365-294X.2006.02981.x
Filatov, 2007, A quantitative trait loci analysis of zinc hyperaccumulation in Arabidopsis halleri, New Phytol., 174, 580, 10.1111/j.1469-8137.2007.02036.x
Frérot, 2003, Zinc and cadmium accumulation in controlled crosses between metallicolous and nonmetallicolous populations of Thlaspi caerulescens (Brassicaceae), New Phytol., 157, 643, 10.1046/j.1469-8137.2003.00701.x
Friedmann, 2007, Microarray gene expression profiling of developmental transitions in Sitka spruce (Picea sitchensis) apical shoots, J. Exp. Bot., 58, 593, 10.1093/jxb/erl246
Garcìa-Hernàndez, 1988, Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis, Plant Physiol., 118, 387, 10.1104/pp.118.2.387
Garland, 1981, Effect of calcium on the uptake and toxicity of lead in Hordeum vulgare L. and Festuca ovina L., New Phytol., 87, 581, 10.1111/j.1469-8137.1981.tb03229.x
Gendre, 2007, TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter, Plant J., 49, 1, 10.1111/j.1365-313X.2006.02937.x
Giachetti, 2006, Metal accumulation in poplar plant grown with industrial wastes, Chemosphere, 64, 446, 10.1016/j.chemosphere.2005.11.021
Gorinova, 2007, Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to cadmium toxicity, Environ. Pollut., 145, 161, 10.1016/j.envpol.2006.03.025
Grime, 1979
Grispen, 2009, Expression of the Arabidopsis metallothionein 2b enhances arsenite sensitivity and root to shoot translocation in tobacco, Environ. Exp. Bot., 66, 69, 10.1016/j.envexpbot.2008.12.021
Grotz, 1998, Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency, Proc. Natl. Acad. Sci. U.S.A., 95, 7220, 10.1073/pnas.95.12.7220
Guo, 2003, Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper, New Phytol., 159, 369, 10.1046/j.1469-8137.2003.00813.x
Guo, 2008, Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance, Plant Physiol., 146, 1697, 10.1104/pp.108.115782
Gustin, 2009, MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants, Plant J., 57, 1116, 10.1111/j.1365-313X.2008.03754.x
Hamberger, 2004, The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes, Proc. Natl. Acad. Sci. U.S.A., 101, 2209, 10.1073/pnas.0307307101
Hanikenne, 2008, Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4, Nature, 453, 391, 10.1038/nature06877
Hassinen, 2009, Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator, Thlaspi caerulescens, J. Exp. Bot., 60, 187, 10.1093/jxb/ern287
Haydon, 2007, Transporters of ligands for essential metal ions in plants, New Phytol., 174, 499, 10.1111/j.1469-8137.2007.02051.x
Herbette, 2006, Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots, Biochimie, 88, 1751, 10.1016/j.biochi.2006.04.018
Hussain, 2004, P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis, Plant Cell, 16, 1327, 10.1105/tpc.020487
Ingle, 2005, Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants, Plant Cell, 17, 2089, 10.1105/tpc.104.030577
Jiang, 2005, Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis), New Phytol., 167, 805, 10.1111/j.1469-8137.2005.01452.x
Kawashima, 2004, Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase, Biotechnol. Lett., 26, 153, 10.1023/B:BILE.0000012895.60773.ff
Kazakou, 2008, Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level, Biol. Rev., 83, 495
Kim, 2004, The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae, Plant J., 39, 237, 10.1111/j.1365-313X.2004.02126.x
Kim, 2007, Chloroplast-targeted BrMT1 (Brassica rapa Type-1 metallothionein) enhances resistance to cadmium and ROS in transgenic Arabidopsis plants, J. Plant Biol., 50, 1, 10.1007/BF03030592
Kobae, 2004, Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis, Plant Cell Physiol., 45, 1749, 10.1093/pcp/pci015
Kohler, 2004, Cloning and expression of multiple metallothioneins from hybrid poplar, New Phytol., 164, 83, 10.1111/j.1469-8137.2004.01168.x
Krämer, 2007, Transition metal transport, FEBS Lett., 581, 2263, 10.1016/j.febslet.2007.04.010
Küpper, 2001, Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense, J. Exp. Bot., 52, 2291, 10.1093/jexbot/52.365.2291
Küpper, 2007, A method for cellular localization of gene expression via quantitative in situ hybridization in plants, Plant J., 50, 159, 10.1111/j.1365-313X.2007.03031.x
Lepp, 1981
Lombi, 2002, Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens, Plant Physiol., 128, 1359, 10.1104/pp.010731
Macnair, 2002, Within and between population genetic variation for zinc accumulation in Arabidopsis halleri, New Phytol., 155, 59, 10.1046/j.1469-8137.2002.00445.x
Macnair, 1999, Zinc tolerance and hyperaccumulation are genetically independent characters, Proc. R. Soc. Lond., Series B: Biol. Sci., 266, 2175, 10.1098/rspb.1999.0905
Mari, 2006, Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens, J. Exp. Bot., 57, 4111, 10.1093/jxb/erl184
Markert, 1996
Marmiroli, 2005, Evidence of the involvement of plant ligno-cellulosic structure in the sequestration of Pb: an X-ray spectroscopy-based analysis, Environ. Pollut., 134, 217, 10.1016/j.envpol.2004.08.004
Marmiroli, 2009, Integration of XAS techniques and genetic methodologies to explore Cs-tolerance in Arabidopsis, Biochimie, 91, 180, 10.1016/j.biochi.2008.07.014
Marmiroli, 2008, Trace elements contamination and availability: human health implications of food chain and biofortification, 23
Marschner, 1995
Martinoia, 2007, Vacuolar transporters and their essential role in plant metabolism, J. Exp. Bot., 58, 83, 10.1093/jxb/erl183
Mäser, 2001, Phylogenetic relationships within cation transporter families of Arabidopsis, Plant Physiol., 126, 1646, 10.1104/pp.126.4.1646
McGrath, 2003, Phytoextraction of metals and metalloids from contaminated soils, Curr. Opin. Biotechnol., 14, 277, 10.1016/S0958-1669(03)00060-0
McIntyre, 2003, Databases and protocol for plant and microorganism selection: hydrocarbons and metals, 887
Memon, 2009, Implications of metal accumulation mechanisms to phytoremediation, Environ. Sci. Pollut. Res., 16, 162, 10.1007/s11356-008-0079-z
Mengoni, 2003, Evolution of copper-tolerance and increased expression of a 2b-type metallothionein gene in Silene paradoxa L. populations, Plant Soil, 257, 451, 10.1023/A:1027325907996
Milner, 2008, Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system, Ann. Bot., 102, 3, 10.1093/aob/mcn063
Morris, 2009, Elemental allelopathy: processes, progress, and pitfalls, Plant Ecol., 202, 1, 10.1007/s11258-008-9470-6
Murillo, 1995, Arch. Biochem. Biophys., 323, 195, 10.1006/abbi.1995.0026
Ohlsson, 2008, Increased metal tolerance in Salix by nicotinamide and nicotinic acid, Plant Physiol. Biochem., 46, 655, 10.1016/j.plaphy.2008.04.004
Oomen, 2009, Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens, New Phytol., 181, 637, 10.1111/j.1469-8137.2008.02694.x
Papoyan, 2004, Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance: characterization of a novel heavy metal transporting ATPase, Plant Physiol., 136, 3814, 10.1104/pp.104.044503
Pauwels, 2007, Merging methods in molecular and ecological genetics to study the adaptation of plants to anthropogenic metal-polluted sites: implications for phytoremediation, Mol. Ecol., 17, 108, 10.1111/j.1365-294X.2007.03486.x
Pence, 2000, The molecular basis for heavy metal hyperaccumulation in Thlaspi caerulescens, Proc. Natl. Acad. Sci. U.S.A., 97, 4956, 10.1073/pnas.97.9.4956
Persans, 1999, Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Hálácsy), Plant Physiol., 121, 1117, 10.1104/pp.121.4.1117
Persans, 2001, Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense, Proc. Natl. Acad. Sci. U.S.A., 98, 9995, 10.1073/pnas.171039798
Pianelli, 2005, Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana, Transgenic Res., 14, 739, 10.1007/s11248-005-7159-3
Pierce, 2005, From ancient genes to modern communities: the cellular stress response and the evolution of plant strategies, Funct. Ecol., 19, 763, 10.1111/j.1365-2435.2005.01028.x
Pilon-Smits, 1999, Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance, Plant Physiol., 119, 123, 10.1104/pp.119.1.123
Plaza, 2007, Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens, J. Exp. Bot., 58, 1717, 10.1093/jxb/erm025
Pollard, 1997, Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae), New Phytol., 135, 655, 10.1046/j.1469-8137.1997.00689.x
Purugganan, 2003, Merging ecology, molecular evolution, and functional genetics, Mol. Ecol., 12, 1109, 10.1046/j.1365-294X.2003.01851.x
Puschenreiter, 2005, Changes in Ni biogeochemistry in the rhizosphere of the hyperaccumulator Thlaspi goesingense, Plant Soil, 271, 205, 10.1007/s11104-004-2387-5
Ramos-Onsins, 2004, Multilocus analysis of variation and speciation in the closely related species Arabidopsis halleri and A. lyrata, Genetics, 166, 373, 10.1534/genetics.166.1.373
Reeves, 2007, The flora and biogeochemistry of the ultramafic soils of Goiàs state, Brazil, Plant Soil, 293, 107, 10.1007/s11104-007-9192-x
Richau, 2009, Intraspecific variation of nickel and zinc accumulation and tolerance in the hyperaccumulator Thlaspi caerulescens, Plant Soil, 314, 253, 10.1007/s11104-008-9724-z
Richau, 2009, Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens, New Phytol., 183, 106, 10.1111/j.1469-8137.2009.02826.x
Rigola, 2006, The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes as identified by comparative EST analysis, New Phytol., 170, 753, 10.1111/j.1469-8137.2006.01714.x
Roberts, 2004, Yellow stripe1, expanded roles for the maize iron-phytosiderophore transporter, Plant Physiol., 135, 112, 10.1104/pp.103.037572
Rogers, 2004, The genetic control of lignin deposition during plant growth and development, New Phytol., 164, 17, 10.1111/j.1469-8137.2004.01143.x
Roosens, 2004, Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens, FEBS Lett., 577, 9, 10.1016/j.febslet.2004.08.084
Roosens, 2005, Variations in plant metallothioneins: the heavy metal hyperaccumulator Thlaspi caerulescens as a case study, Planta, 222, 716, 10.1007/s00425-005-0006-1
Roosens, 2008, The use of comparative genome analysis and syntenic relationships allows extrapolating the position of Zn tolerance QTL regions from Arabidopsis halleri into Arabidopsis thaliana, Plant Soil, 306, 105, 10.1007/s11104-007-9383-5
Roosens, 2008, Using Arabidopsis to explore zinc tolerance and hyperaccumulation, Tr. Plant Sci., 13, 208, 10.1016/j.tplants.2008.02.006
Rowland, 2007, The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1, FEBS Lett., 581, 3538, 10.1016/j.febslet.2007.06.065
Schat, 1996, Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of Silene vulgaris, Evolution, 50, 1888, 10.1111/j.1558-5646.1996.tb03576.x
Semane, 2007, Cadmium response in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system, Physiol. Plant., 129, 519, 10.1111/j.1399-3054.2006.00822.x
Sinclair, 2007, The use of the zinc-fluorophore, Zinpyr-1, in the study of zinc homeostasis in Arabidopsis roots, New Phytol., 174, 39, 10.1111/j.1469-8137.2007.02030.x
Stephan, 1993, Nicotianamine: mediator of transport of iron and heavy metals in the phloem?, Physiol. Plant., 88, 522, 10.1111/j.1399-3054.1993.tb01367.x
Suzuki, 2006, Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley, Plant J., 48, 85, 10.1111/j.1365-313X.2006.02853.x
Takahashi, 1997, Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfur-starved roots plays a central role in Arabidopsis thaliana, Proc. Natl. Acad. Sci. U.S.A., 94, 11102, 10.1073/pnas.94.20.11102
Talke, 2006, Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri, Plant Physiol., 142, 148, 10.1104/pp.105.076232
Thomine, 2000, Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes, Proc. Natl. Acad. Sci. U.S.A., 97, 4991, 10.1073/pnas.97.9.4991
van de Mortel, 2006, Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens, Plant Physiol., 142, 1127, 10.1104/pp.106.082073
van de Mortel, 2008, Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd hyperaccumulator Thlaspi caerulescens, Plant Cell Environ., 31, 301, 10.1111/j.1365-3040.2007.01764.x
van der Zaal, 1999, Overexpression of a novel Arabidopsis gene related to putative zinc transporter genes from animals can lead to enhanced zinc resistance and accumulation, Plant Physiol., 119, 1047, 10.1104/pp.119.3.1047
van Hoof, 2001, Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene, Plant Physiol., 126, 1519, 10.1104/pp.126.4.1519
Venglat, 2002, The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A., 99, 4730, 10.1073/pnas.072626099
Verbruggen, 2009, Molecular mechanisms of metal hyperaccumulation in plants, New Phytol., 181, 759, 10.1111/j.1469-8137.2008.02748.x
Verret, 2004, Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance, FEBS Lett., 576, 306, 10.1016/j.febslet.2004.09.023
Vert, 2002, IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth, Plant Cell, 14, 1223, 10.1105/tpc.001388
Vesk, 2009, Hyperaccumulators and herbivores—a Bayesian meta-analysis of feeding choice trials, J. Chem. Ecol., 35, 289, 10.1007/s10886-009-9607-7
Waters, 2006, Mutations in Arabidopsis yellow stripe-like 1 and yellow stripe-like 3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds, Plant Physiol., 141, 1446, 10.1104/pp.106.082586
Weber, 2004, Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors, Plant J., 37, 269, 10.1046/j.1365-313X.2003.01960.x
Weber, 2006, Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+ hypertolerant facultative metallophyte Arabidopsis halleri, Plant Cell Environ., 29, 950, 10.1111/j.1365-3040.2005.01479.x
Wei, 2009, The Thlaspi caerulescens NRAMP homologue TcNRAMP3 is capable of divalent cation transport, Mol. Biotechnol., 41, 15, 10.1007/s12033-008-9088-x
Wenzel, 2003, Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil, Environ. Pollut., 123, 131, 10.1016/S0269-7491(02)00341-X
West, 1979, Release to shoots of copper stored in roots of Pinus radiata D, Don, 43, 237
Whetten, 1995, Lignin biosynthesis, Plant Cell, 7, 1001, 10.2307/3870053
White, 2002, Does zinc move apoplastically to the xylem in roots of Thlaspi caerulescens?, New Phytol., 153, 201, 10.1046/j.0028-646X.2001.00325.x
Whiting, 2000, Positive response to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens, New Phytol., 145, 199, 10.1046/j.1469-8137.2000.00570.x
Whiting, 2001, Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens, Environ. Sci. Technol., 35, 3144, 10.1021/es001938v
Wiley, 2005, Predicting intra-taxa differences in plant uptake of Cesium-134/137, J. Environ. Qual., 34, 1478, 10.2134/jeq2004.0454
Willems, 2007, The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci, Genetics, 176, 659, 10.1534/genetics.106.064485
Wintz, 2003, Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis, J. Biol. Chem., 278, 47644, 10.1074/jbc.M309338200
Wong, 2009, HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana, New Phytol., 181, 71, 10.1111/j.1469-8137.2008.02638.x
Wu, 1975, Zinc and copper uptake by Agrostis stolonifera tolerant to both zinc and copper, New Phytol., 75, 231, 10.1111/j.1469-8137.1975.tb01391.x
Xie, 2009, Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens, Plant Soil, 318, 205, 10.1007/s11104-008-9830-y
Xiong, 2008, The role of bacteria in the heavy metals removal and growth of Sedum alfredii Hance in an aqueous medium, Chemosphere, 70, 489, 10.1016/j.chemosphere.2007.06.028
Yang, 2005, Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation, J. Trace Elem. Med. Biol., 18, 339, 10.1016/j.jtemb.2005.02.007
Zha, 2004, Co-segregation analysis of cadmium and zinc accumulation in Thlaspi caerulescens interecotypic crosses, New Phytol., 163, 299, 10.1111/j.1469-8137.2004.01113.x
Zhao, 2001, Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization, New Phytol., 151, 613, 10.1046/j.0028-646x.2001.00213.x
Zhigang, 2006, Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings, J. Exp. Bot., 57, 3575, 10.1093/jxb/erl102
Zhou, 1994, Functional homologs of fungal metallothionein genes from Arabidopsis, Plant Cell, 6, 875
Zimeri, 2005, The plant MT1 metallothioneins are stabilized by binding cadmium and are required for cadmium tolerance and accumulation, Plant Mol. Biol., 58, 839, 10.1007/s11103-005-8268-3