Limiting power density in pressure-retarded osmosis: Observation and implications

Desalination - Tập 467 - Trang 51-56 - 2019
Sophia L. Plata1, Amy E. Childress1
1Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 S. Vermont Avenue, Los Angeles, CA 90089, USA

Tài liệu tham khảo

Ghaffour, 2013, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability, Desalination, 309, 197, 10.1016/j.desal.2012.10.015 Greenlee, 2009, Reverse osmosis desalination: water sources, technology, and today's challenges, Water Res., 43, 2317, 10.1016/j.watres.2009.03.010 Miller, 2003 Achilli, 2009, Power generation with pressure retarded osmosis: an experimental and theoretical investigation, J. Membr. Sci., 343, 42, 10.1016/j.memsci.2009.07.006 Kim, 2013, Reverse osmosis (RO) and pressure retarded osmosis (PRO) hybrid processes: model-based scenario study, Desalination, 322, 121, 10.1016/j.desal.2013.05.010 Achilli, 2014, Experimental results from RO-PRO: a next generation system for low-energy desalination, Environ. Sci. Technol., 48, 6437, 10.1021/es405556s Prante, 2014, RO-PRO desalination: an integrated low-energy approach to seawater desalination, Appl. Energy, 120, 104, 10.1016/j.apenergy.2014.01.013 Altaee, 2015, Evaluation of FO-RO and PRO-RO designs for power generation and seawater desalination using impaired water feeds, Desalination, 368, 27, 10.1016/j.desal.2014.06.022 Loeb, 1976, Production of energy from concentrated brines by pressure-retarded osmosis: I. Preliminary technical and economic correlations, J. Membr. Sci., 1, 49, 10.1016/S0376-7388(00)82257-7 Loeb, 1976, Production of energy from concentrated brines by pressure-retarded osmosis: II. Experimental results and projected energy costs, J. Membr. Sci., 1, 249, 10.1016/S0376-7388(00)82271-1 Lee, 1981, Membranes for power generation by pressure-retarded osmosis, J. Membr. Sci., 8, 141, 10.1016/S0376-7388(00)82088-8 Thorsen, 2009, The potential for power production from salinity gradients by pressure retarded osmosis, J. Membr. Sci., 335, 103, 10.1016/j.memsci.2009.03.003 Chalida Klaysom, 2013, Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply, R. Soc. Chem., vol. 42, 6959, 10.1039/c3cs60051c Hickenbottom, 2016, Assessing the current state of commercially available membranes and spacers for energy production with pressure retarded osmosis, Desalination, 389, 108, 10.1016/j.desal.2015.09.029 Han, 2013, High performance thin film composite pressure retarded osmosis (PRO) membranes for renewable salinity-gradient energy generation, J. Membr. Sci., 440, 108, 10.1016/j.memsci.2013.04.001 Lin, 2014, Thermodynamic limits of extracting energy by pressure retarded osmosis, Energy Environ. Sci., 7, 2706, 10.1039/C4EE01020E Han, 2015, Progress in pressure retarded osmosis (PRO) membranes for osmotic power generation, Prog. Polym. Sci., 51, 1, 10.1016/j.progpolymsci.2015.04.005 Cath, 2006, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci., 281, 70, 10.1016/j.memsci.2006.05.048 Yip, 2010, High performance thin-film composite forward osmosis membrane, Environ. Sci. Technol., 44, 3812, 10.1021/es1002555 Lee, 2011, A review of reverse osmosis membrane materials for desalination—development to date and future potential, J. Membr. Sci., 370, 1, 10.1016/j.memsci.2010.12.036 Lalia, 2013, A review on membrane fabrication: structure, properties and performance relationship, Desalination, 326, 77, 10.1016/j.desal.2013.06.016 Lin, 2014, Hybrid pressure retarded osmosis–membrane distillation system for power generation from low-grade heat: thermodynamic analysis and energy efficiency, Environ. Sci. Technol., 48, 5306, 10.1021/es405173b Yip, 2011, Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients, Environ. Sci. Technol., 45, 4360, 10.1021/es104325z She, 2013, Organic fouling in pressure retarded osmosis: experiments, mechanisms and implications, J. Membr. Sci., 428, 181, 10.1016/j.memsci.2012.10.045 Yip, 2013, Influence of natural organic matter fouling and osmotic backwash on pressure retarded osmosis energy production from natural salinity gradients, Environ. Sci. Technol., 47, 12607, 10.1021/es403207m Zhang, 2014, Gypsum scaling in pressure retarded osmosis: experiments, mechanisms and implications, Water Res., 48, 387, 10.1016/j.watres.2013.09.051 Nguyen, 2019, Critical flux-based membrane fouling control of forward osmosis: behavior, sustainability, and reversibility, J. Membr. Sci., 570-571, 380, 10.1016/j.memsci.2018.10.062 She, 2017, Pressure-retarded osmosis with wastewater concentrate feed: fouling process considerations, J. Membr. Sci., 542, 233, 10.1016/j.memsci.2017.08.022 Tang, 2009, The role of foulant–foulant electrostatic interaction on limiting flux for RO and NF membranes during humic acid fouling—theoretical basis, experimental evidence, and AFM interaction force measurement, J. Membr. Sci., 326, 526, 10.1016/j.memsci.2008.10.043 Tang, 2007, Membrane independent limiting flux for RO and NF membranes fouled by humic acid, Environ. Sci. Technol., 41, 4767, 10.1021/es063105w Morrow, 2019, Evidence, determination, and implications of membrane-independent limiting flux in forward osmosis systems, Environ. Sci. Technol., 53, 4380, 10.1021/acs.est.8b05925 Tiraferri, 2013, A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes, J. Membr. Sci., 444, 523, 10.1016/j.memsci.2013.05.023 She, 2012, Osmotic power production from salinity gradient resource by pressure retarded osmosis: effects of operating conditions and reverse solute diffusion, J. Membr. Sci., 401-402, 262, 10.1016/j.memsci.2012.02.014 Kim, 2015, Pressure retarded osmosis (PRO) for integrating seawater desalination and wastewater reclamation: energy consumption and fouling, J. Membr. Sci., 483, 34, 10.1016/j.memsci.2015.02.025 Hancock, 2009, Solute coupled diffusion in osmotically driven membrane processes, Environ. Sci. Technol., 43, 6769, 10.1021/es901132x Achilli, 2009, The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes, Desalination, 239, 10, 10.1016/j.desal.2008.02.022 Gray, 2006, Internal concentration polarization in forward osmosis: role of membrane orientation, Desalination, 197, 1, 10.1016/j.desal.2006.02.003 Boo, 2013, Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation, J. Membr. Sci., 444, 148, 10.1016/j.memsci.2013.05.004 Holloway, 2007, Forward osmosis for concentration of anaerobic digester centrate, Water Res., 41, 4005, 10.1016/j.watres.2007.05.054 Motsa, 2017, Osmotic backwash of fouled FO membranes: cleaning mechanisms and membrane surface properties after cleaning, Desalination, 402, 62, 10.1016/j.desal.2016.09.018 Sagiv, 2008, Osmotic backwash mechanism of reverse osmosis membranes, J. Membr. Sci., 322, 225, 10.1016/j.memsci.2008.05.055 Sagiv, 2010, Parameters affecting backwash variables of RO membranes, Desalination, 261, 347, 10.1016/j.desal.2010.04.012 She, 2016, Membrane fouling in osmotically driven membrane processes: a review, J. Membr. Sci., 499, 201, 10.1016/j.memsci.2015.10.040 Sim, 2018, Comparative evaluation of osmotically-driven cleaning methods for organic-inorganic fouling in pressure retarded osmosis (PRO), Eng. Sci. Technol., 21, 1018 Tang, 2011, Colloidal interactions and fouling of NF and RO membranes: a review, Adv. Colloid Interf. Sci., 164, 126, 10.1016/j.cis.2010.10.007 Alsvik, 2013, Pressure retarded osmosis and forward osmosis membranes: materials and methods, Polymers, 5, 10.3390/polym5010303 Mi, 2008, Chemical and physical aspects of organic fouling of forward osmosis membranes, J. Membr. Sci., 320, 292, 10.1016/j.memsci.2008.04.036 Skilhagen, 2010, Osmotic power — a new, renewable energy source, Desalin. Water Treat., 15, 271, 10.5004/dwt.2010.1759