The collagen matrix regulates the survival and function of pancreatic islets

Endocrine - Trang 1-11 - 2023
Yingying Zhu1, Mei Yang1, Wanli Xu1, Yun Zhang1, Linlin Pan1, Lina Wang1, Furong Wang1, Yanting Lu1
1Traditional Chinese Medical college, Shandong University of Traditional Chinese Medicine, Jinan, China

Tóm tắt

The extracellular matrix (ECM) provides an appropriate microenvironment for many kinds of cells, including pancreatic cells. Collagens are the most abundant components of the ECM. Type I, IV, V and VI collagen has been detected in pancreatic islets, and each type plays important role in the proliferation, survival, function and differentiation of pancreatic cells. In some cases, collagens show behaviours similar to those of growth factors and regulate the biological behaviour of β cells by binding with certain growth factors, including IGFs, EGFs and FGFs. The transcriptional coactivator YAP/TAZ has been widely recognised as a mechanosensor that senses changes in the physical characteristics of the ECM and inhibition of YAP/TAZ enhances insulin production and secretion. Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterised by the destruction of insulin-producing β cells. The crosstalk between collagens and immune cells plays a key role in the development and differentiation of immune cells. Further, Supplementation with collagens during islet transplantation is a promising strategy for improving the quality of the islets. But, excessive collagen deposition results in pancreatic fibrosis and pancreatic carcinoma. Targeting inhibit Piezo, autophagy or IL-6 may reduce excessive collagen deposition-induced pancreatic fibrosis and pancreatic carcinoma. This review provides insights into the treatment of T1DM to prolong life expectancy and provides the potential targets for treating collagen deposition-induced pancreatic fibrosis and pancreatic carcinoma.

Tài liệu tham khảo

S. Thipsawat, Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: a review of the literature. Diab Vasc. Dis. Res. 18(6), 14791641211058856 (2021). https://doi.org/10.1177/14791641211058856 A. Ramzy, D.M. Thompson, K.A. Ward-Hartstonge, S. Ivison, L. Cook, R.V. Garcia, J. Loyal, P.T.W. Kim, G.L. Warnock, M.K. Levings, T.J. Kieffer, Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell 28(12), 2047–2061 (2021). https://doi.org/10.1016/j.stem.2021.10.003 J.C. Valdoz, B.C. Johnson, D.J. Jacobs, N.A. Franks, E.L. Dodson, C. Sanders, C.G. Cribbs, P.M. Van Ry, The ECM: to Scaffold, or Not to Scaffold, that is the question. Int. J. Mol. Sci. 22(23), 12690 (2021). https://doi.org/10.3390/ijms222312690 L.A. Llacua, B.J. de Haan, P. de Vos, Laminin and collagen IV inclusion in immunoisolating microcapsules reduces cytokine-mediated cell death in human pancreatic islets. J. Tissue Eng. Regen. Med. 12(2), 460–467 (2018). https://doi.org/10.1002/term.2472 L.A. Llacua, M.M. Faas, P. de Vos, Extracellular matrix molecules and their potential contribution to the function of transplanted pancreatic islets. Diabetologia 61(6), 1261–1272 (2018). https://doi.org/10.1007/s00125-017-4524-8 Y. Zhu, S. Chen, W. Liu, F. Xu, J. Lu, T. Hayashi, K. Mizuno, S. Hattori, H. Fujisaki, T. Ikejima, IGF-1R/YAP signaling pathway is involved in collagen V-induced insulin biosynthesis and secretion in rat islet INS-1 cells. Connect. Tissue Res. 63(5), 498–513 (2022). https://doi.org/10.1080/03008207.2021.2025225 Y. Zhu, W. Liu, S. Chen, F. Xu, L. Zhang, T. Hayashi, K. Mizuno, S. Hattori, H. Fujisaki, T. Ikejima, Collagen type I enhances cell growth and insulin biosynthesis in rat pancreatic cells. J. Mol. Endocrinol. 67(3), 135–148 (2021). https://doi.org/10.1530/JME-21-0032 P. de Vos, M. Spasojevic, M.M. Faas, Treatment of diabetes with encapsulated islets. Adv. Exp. Med. Biol. 670, 38–53 (2010). https://doi.org/10.1007/978-1-4419-5786-3_5 A. Llacua, B.J. de Haan, S.A. Smink, P. de Vos, Extracellular matrix components supporting human islet function in alginate-based immunoprotective microcapsules for treatment of diabetes. J. Biomed. Mater. Res. A 104(7), 1788–1796 (2016). https://doi.org/10.1002/jbm.a.35706 M.A. Kanak, M. Takita, T. Itoh, J.A. SoRelle, S. Murali, F. Kunnathodi, R. Shahbazov, M.C. Lawrence, M.F. Levy, B. Naziruddin, Alleviation of instant blood-mediated inflammatory reaction in autologous conditions through treatment of human islets with NF-kappaB inhibitors. Transplantation 98(5), 578–584 (2014). https://doi.org/10.1097/TP.0000000000000107 M.Y. Donath, M. Boni-Schnetzler, H. Ellingsgaard, P.A. Halban, J.A. Ehses, Cytokine production by islets in health and diabetes: cellular origin, regulation and function. Trends Endocrinol. Metab. 21(5), 261–267 (2010). https://doi.org/10.1016/j.tem.2009.12.010 C. Kuehn, P. Vermette, T. Fulop, Cross talk between the extracellular matrix and the immune system in the context of endocrine pancreatic islet transplantation. A review article. Pathol. Biol. 62(2), 67–78 (2014). https://doi.org/10.1016/j.patbio.2014.01.001 G.A. Di Lullo, S.M. Sweeney, J. Korkko, L. Ala-Kokko, J.D. San Antonio, Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem. 277(6), 4223–4231 (2002). https://doi.org/10.1074/jbc.M110709200 M. Musiime, J. Chang, U. Hansen, K.E. Kadler, C. Zeltz, D. Gullberg, Collagen assembly at the cell surface: dogmas revisited. Cells 10(3), 662 (2021). https://doi.org/10.3390/cells10030662 E.S. Wijelath, S. Rahman, M. Namekata, J. Murray, T. Nishimura, Z. Mostafavi-Pour, Y. Patel, Y. Suda, M.J. Humphries, M. Sobel, Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circ. Res. 99(8), 853–860 (2006). https://doi.org/10.1161/01.RES.0000246849.17887.66 F.E. Smith, K.M. Rosen, L. Villa-Komaroff, G.C. Weir, S. Bonner-Weir, Enhanced insulin-like growth factor I gene expression in regenerating rat pancreas. Proc. Natl. Acad. Sci. USA 88(14), 6152–6156 (1991). https://doi.org/10.1073/pnas.88.14.6152 G. Da Silva Xavier, Q. Qian, P.J. Cullen, G.A. Rutter, Distinct roles for insulin and insulin-like growth factor-1 receptors in pancreatic beta-cell glucose sensing revealed by RNA silencing. Biochem. J. 377(Pt 1), 149–158 (2004). https://doi.org/10.1042/BJ20031260 H. Tamemoto, T. Kadowaki, K. Tobe, T. Yagi, H. Sakura, T. Hayakawa, Y. Terauchi, K. Ueki, Y. Kaburagi, S. Satoh et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372(6502), 182–186 (1994). https://doi.org/10.1038/372182a0 E. Araki, M.A. Lipes, M.E. Patti, J.C. Bruning, B. Haag 3rd, R.S. Johnson, C.R. Kahn, Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372(6502), 186–190 (1994). https://doi.org/10.1038/372186a0 Y. Zhou, Q. Hu, F. Chen, J. Zhang, J. Guo, H. Wang, J. Gu, L. Ma, G. Ho, Human umbilical cord matrix-derived stem cells exert trophic effects on beta-cell survival in diabetic rats and isolated islets. Dis. Model Mech. 8(12), 1625–1633 (2015). https://doi.org/10.1242/dmm.021857 X.Y. Li, S.Y. Wu, P.S. Leung, Human fetal bone marrow-derived mesenchymal stem cells promote the proliferation and differentiation of pancreatic progenitor cells and the engraftment function of islet-like cell clusters. Int. J. Mol. Sci. 20(17), 4083 (2019). https://doi.org/10.3390/ijms20174083 A. Kharat, B. Chandravanshi, S. Gadre, V. Patil, R. Bhonde, A. Dubhashi, IGF-1 and somatocrinin trigger islet differentiation in human amniotic membrane derived mesenchymal stem cells. Life Sci. 216, 287–294 (2019). https://doi.org/10.1016/j.lfs.2018.11.028 A. Belfiore, R. Malaguarnera, M.L. Nicolosi, R. Lappano, M. Ragusa, A. Morrione, V. Vella, A novel functional crosstalk between DDR1 and the IGF axis and its relevance for breast cancer. Cell Adh. Migr. 12(4), 305–314 (2018). https://doi.org/10.1080/19336918.2018.1445953 R. Malaguarnera, M.L. Nicolosi, A. Sacco, A. Morcavallo, V. Vella, C. Voci, M. Spatuzza, S.Q. Xu, R.V. Iozzo, R. Vigneri, A. Morrione, A. Belfiore, Novel cross talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses. Oncotarget 6(18), 16084–16105 (2015). https://doi.org/10.18632/oncotarget.3177 Y. Zhu, S. Chen, W. Liu, L. Zhang, F. Xu, T. Hayashi, K. Mizuno, S. Hattori, H. Fujisaki, and T. Ikejima. Collagens I and V differently regulate the proliferation and adhesion of rat islet INS-1 cells through the integrin beta1/E-cadherin/beta-catenin pathway. Connect. Tissue Res. 1–13 (2020). https://doi.org/10.1080/03008207.2020.1845321. S. Surve, S.C. Watkins, A. Sorkin, EGFR-RAS-MAPK signaling is confined to the plasma membrane and associated endorecycling protrusions. J. Cell Biol. 220(11), 202107103 (2021). https://doi.org/10.1083/jcb.202107103 F. Guerra, S. Quintana, S. Giustina, G. Mendeluk, L. Jufe, M.A. Avagnina, L.B. Diaz, L.A. Palaoro, Investigation of EGFR/pi3k/Akt signaling pathway in seminomas. Biotech. Histochem. 96(2), 125–137 (2021). https://doi.org/10.1080/10520295.2020.1776393 H. Maachi, G. Fergusson, M. Ethier, G.N. Brill, L.S. Katz, L.B. Honig, M.R. Metukuri, D.K. Scott, J. Ghislain, V. Poitout, HB-EGF signaling is required for glucose-induced pancreatic beta-cell proliferation in rats. Diabetes 69(3), 369–380 (2020). https://doi.org/10.2337/db19-0643 L. Yang, Y. Zhu, D. Kong, J. Gong, W. Yu, Y. Liang, Y. Nie, C.B. Teng, EGF suppresses the expression of miR-124a in pancreatic beta cell lines via ETS2 activation through the MEK and PI3K signaling pathways. Int. J. Biol. Sci. 15(12), 2561–2575 (2019). https://doi.org/10.7150/ijbs.34985 A. Ardestani, S. Li, K. Annamalai, B. Lupse, S. Geravandi, A. Dobrowolski, S. Yu, S. Zhu, T.D. Baguley, M. Surakattula, J. Oetjen, L. Hauberg-Lotte, R. Herranz, S. Awal, D. Altenhofen, V. Nguyen-Tran, S. Joseph, P.G. Schultz, A.K. Chatterjee, N. Rogers, M.S. Tremblay, W. Shen, K. Maedler, Neratinib protects pancreatic beta cells in diabetes. Nat. Commun. 10(1), 5015 (2019). https://doi.org/10.1038/s41467-019-12880-5 T. Sarazin, G. Collin, E. Buache, L. Van Gulick, C. Charpentier, C. Terryn, H. Morjani, C. Saby, Type I collagen aging increases expression and activation of EGFR and induces resistance to Erlotinib in lung carcinoma in 3D matrix model. Front. Oncol. 10, 1593 (2020). https://doi.org/10.3389/fonc.2020.01593 D. Nanba, F. Toki, K. Asakawa, H. Matsumura, K. Shiraishi, K. Sayama, K. Matsuzaki, H. Toki, E.K. Nishimura, EGFR-mediated epidermal stem cell motility drives skin regeneration through COL17A1 proteolysis. J. Cell Biol. 220(11), 202012073 (2021). https://doi.org/10.1083/jcb.202012073 A.F. Blandin, E. Cruz Da Silva, M.C. Mercier, O. Glushonkov, P. Didier, S. Dedieu, C. Schneider, J. Devy, N. Etienne-Selloum, M. Dontenwill, L. Choulier, M. Lehmann, Gefitinib induces EGFR and alpha5beta1 integrin co-endocytosis in glioblastoma cells. Cell Mol. Life Sci. 78(6), 2949–2962 (2021). https://doi.org/10.1007/s00018-020-03686-6 O. Tsaplina, E. Bozhokina, Bacterial outer membrane protein OmpX regulates beta1 integrin and Epidermal Growth Factor Receptor (EGFR) involved in invasion of M-HeLa cells by serratia proteamaculans. Int. J. Mol. Sci. 22(24), 13246 (2021). https://doi.org/10.3390/ijms222413246 W. Baszanowska, M. Misiura, I. Oscilowska, J. Palka, W. Miltyk, Extracellular Prolidase (PEPD) induces anabolic processes through EGFR, beta1-integrin, and IGF-1R signaling pathways in an experimental model of wounded fibroblasts. Int. J. Mol. Sci. 22(2), 942 (2021). https://doi.org/10.3390/ijms22020942 W. Sheng, C. Chen, M. Dong, G. Wang, J. Zhou, H. Song, Y. Li, J. Zhang, S. Ding, Calreticulin promotes EGF-induced EMT in pancreatic cancer cells via Integrin/EGFR-ERK/MAPK signaling pathway. Cell Death Dis. 8(10), 3147 (2017). https://doi.org/10.1038/cddis.2017.547 A.K. Iyer, K.T. Tran, C.W. Borysenko, M. Cascio, C.J. Camacho, H.C. Blair, I. Bahar, A. Wells, Tenascin cytotactin epidermal growth factor-like repeat binds epidermal growth factor receptor with low affinity. J. Cell Physiol. 211(3), 748–758 (2007). https://doi.org/10.1002/jcp.20986 M.F. Brizzi, G. Tarone, P. Defilippi, Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr. Opin. Cell Biol. 24(5), 645–651 (2012). https://doi.org/10.1016/j.ceb.2012.07.001 L. Geng, K.S.L. Lam, A. Xu, The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat. Rev. Endocrinol. 16(11), 654–667 (2020). https://doi.org/10.1038/s41574-020-0386-0 M. Zhou, R.M. Learned, S.J. Rossi, A.M. DePaoli, H. Tian, L. Ling, Engineered FGF19 eliminates bile acid toxicity and lipotoxicity leading to resolution of steatohepatitis and fibrosis in mice. Hepatol. Commun. 1(10), 1024–1042 (2017). https://doi.org/10.1002/hep4.1108 W. Lu, X. Li, Y. Luo, FGF21 in obesity and cancer: new insights. Cancer Lett. 499, 5–13 (2021). https://doi.org/10.1016/j.canlet.2020.11.026 W.Y. So, Q. Cheng, A. Xu, K.S. Lam, P.S. Leung, Loss of fibroblast growth factor 21 action induces insulin resistance, pancreatic islet hyperplasia and dysfunction in mice. Cell Death Dis. 6, 1707 (2015). https://doi.org/10.1038/cddis.2015.80 P.A. Kolodziejski, M. Sassek, J. Bien, N. Leciejewska, D. Szczepankiewicz, B. Szczepaniak, M. Wojciechowska, L. Nogowski, K.W. Nowak, M.Z. Strowski, E. Pruszynska-Oszmalek, FGF-1 modulates pancreatic beta-cell functions/metabolism: an in vitro study. Gen. Comp. Endocrinol. 294, 113498 (2020). https://doi.org/10.1016/j.ygcen.2020.113498 R. Dettmer, K. Cirksena, J. Munchhoff, J. Kresse, U. Diekmann, I. Niwolik, F.F.R. Buettner, O. Naujok, FGF2 inhibits early pancreatic lineage specification during differentiation of human embryonic stem cells. Cells 9(9), 1927 (2020). https://doi.org/10.3390/cells9091927 S. Arnaud-Dabernat, M. Kritzik, A.G. Kayali, Y.Q. Zhang, G. Liu, C. Ungles, N. Sarvetnick, FGFR3 is a negative regulator of the expansion of pancreatic epithelial cells. Diabetes 56(1), 96–106 (2007). https://doi.org/10.2337/db05-1073 T. Jia, E. Vaganay, G. Carpentier, P. Coudert, V. Guzman-Gonzales, R. Manuel, B. Eymin, J.L. Coll, F. Ruggiero, A collagen Valpha1-derived fragment inhibits FGF-2 induced-angiogenesis by modulating endothelial cells plasticity through its heparin-binding site. Matrix Biol. 94, 18–30 (2020). https://doi.org/10.1016/j.matbio.2020.07.001 J.C. Stendahl, D.B. Kaufman, S.I. Stupp, Extracellular matrix in pancreatic islets: relevance to scaffold design and transplantation. Cell Transpl. 18(1), 1–12 (2009). https://doi.org/10.3727/096368909788237195 J. Baek, K.I. Lee, H.J. Ra, M.K. Lotz, D.D. D’Lima, Collagen fibrous scaffolds for sustained delivery of growth factors for meniscal tissue engineering. Nanomedicine 17(2), 77–93 (2022). https://doi.org/10.2217/nnm-2021-0313 R. Nakamura, T. Katsuno, M. Kitamura, M. Yamashita, T. Tsuji, R. Suzuki, Y. Kishimoto, A. Suehiro, I. Tateya, T. Nakamura, K. Omori, Collagen sponge scaffolds containing growth factors for the functional regeneration of tracheal epithelium. J. Tissue Eng. Regen. Med. 13(5), 835–845 (2019). https://doi.org/10.1002/term.2835 N. Nagy, G. Kaber, M.J. Kratochvil, H.F. Kuipers, S.M. Ruppert, K. Yadava, J. Yang, S.C. Heilshorn, S.A. Long, A. Pugliese, P.L. Bollyky, Weekly injection of IL-2 using an injectable hydrogel reduces autoimmune diabetes incidence in NOD mice. Diabetologia 64(1), 152–158 (2021). https://doi.org/10.1007/s00125-020-05314-1 A. Ardestani, K. Maedler, The hippo signaling pathway in pancreatic beta-Cells: functions and regulations. Endocr. Rev. 39(1), 21–35 (2018). https://doi.org/10.1210/er.2017-00167 T. Hasegawa, T. Sugihara, Y. Hoshino, R. Tarumoto, Y. Matsuki, T. Kanda, T. Takata, T. Nagahara, T. Matono, H. Isomoto, Photosensitizer verteporfin inhibits the growth of YAP- and TAZ-dominant gastric cancer cells by suppressing the anti-apoptotic protein Survivin in a light-independent manner. Oncol. Lett. 22(4), 703 (2021). https://doi.org/10.3892/ol.2021.12964 A. Mamidi, C. Prawiro, P.A. Seymour, K.H. de Lichtenberg, A. Jackson, P. Serup, H. Semb, Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature 564(7734), 114–118 (2018). https://doi.org/10.1038/s41586-018-0762-2 E.A. Rosado-Olivieri, K. Anderson, J.H. Kenty, D.A. Melton, YAP inhibition enhances the differentiation of functional stem cell-derived insulin-producing beta cells. Nat. Commun. 10(1), 1464 (2019). https://doi.org/10.1038/s41467-019-09404-6 N.M. George, C.E. Day, B.P. Boerner, R.L. Johnson, N.E. Sarvetnick, Hippo signaling regulates pancreas development through inactivation of Yap. Mol. Cell Biol. 32(24), 5116–5128 (2012). https://doi.org/10.1128/MCB.01034-12 E. Rozengurt, J. Sinnett-Smith, G. Eibl, Yes-associated protein (YAP) in pancreatic cancer: at the epicenter of a targetable signaling network associated with patient survival. Signal. Transduct. Target Ther. 3, 11 (2018). https://doi.org/10.1038/s41392-017-0005-2 M. Uhlen, C. Zhang, S. Lee, E. Sjostedt, L. Fagerberg, G. Bidkhori, R. Benfeitas, M. Arif, Z. Liu, F. Edfors, K. Sanli, K. von Feilitzen, P. Oksvold, E. Lundberg, S. Hober, P. Nilsson, J. Mattsson, J.M. Schwenk, H. Brunnstrom, B. Glimelius, T. Sjoblom, P.H. Edqvist, D. Djureinovic, P. Micke, C. Lindskog, A. Mardinoglu, F. Ponten, A pathology atlas of the human cancer transcriptome. Science 357(6352), 2507 (2017). https://doi.org/10.1126/science.aan2507 T. Panciera, L. Azzolin, M. Cordenonsi, S. Piccolo, Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 18(12), 758–770 (2017). https://doi.org/10.1038/nrm.2017.87 M. Ohgushi, M. Minaguchi, Y. Sasai, Rho-signaling-directed YAP/TAZ activity underlies the long-term survival and expansion of human embryonic stem cells. Cell Stem Cell 17(4), 448–461 (2015). https://doi.org/10.1016/j.stem.2015.07.009 G. Halder, S. Dupont, S. Piccolo, Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol. Cell Biol. 13(9), 591–600 (2012). https://doi.org/10.1038/nrm3416 X. Liu, X. Long, W. Liu, Y. Zhao, T. Hayashi, M. Yamato, K. Mizuno, H. Fujisaki, S. Hattori, S.I. Tashiro, T. Ogura, Y. Atsuzawa, T. Ikejima, Type I collagen induces mesenchymal cell differentiation into myofibroblasts through YAP-induced TGF-beta1 activation. Biochimie 150, 110–130 (2018). https://doi.org/10.1016/j.biochi.2018.05.005 Q. Xu, X. Liu, W. Liu, T. Hayashi, M. Yamato, H. Fujisaki, S. Hattori, S.I. Tashiro, S. Onodera, T. Ikejima, Type I collagen-induced YAP nuclear expression promotes primary cilia growth and contributes to cell migration in confluent mouse embryo fibroblast 3T3-L1 cells. Mol. Cell Biochem. 450(1-2), 87–96 (2019). https://doi.org/10.1007/s11010-018-3375-z I. Afrikanova, M. Yebra, M. Simpkinson, Y. Xu, A. Hayek, A. Montgomery, Inhibitors of Src and focal adhesion kinase promote endocrine specification: impact on the derivation of beta-cells from human pluripotent stem cells. J. Biol. Chem. 286(41), 36042–36052 (2011). https://doi.org/10.1074/jbc.M111.290825 D.L. Eizirik, L. Pasquali, M. Cnop, Pancreatic beta-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat. Rev. Endocrinol. 16(7), 349–362 (2020). https://doi.org/10.1038/s41574-020-0355-7 J. Ilonen, J. Lempainen, R. Veijola, The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat. Rev. Endocrinol. 15(11), 635–650 (2019). https://doi.org/10.1038/s41574-019-0254-y O. Skog, S. Korsgren, A. Melhus, O. Korsgren, Revisiting the notion of type 1 diabetes being a T-cell-mediated autoimmune disease. Curr. Opin. Endocrinol. Diabetes Obes. 20(2), 118–123 (2013). https://doi.org/10.1097/MED.0b013e32835edb89 A.J. Dwyer, J.M. Ritz, J.S. Mitchell, T. Martinov, M. Alkhatib, N. Silva, C.G. Tucker, B.T. Fife, Enhanced CD4(+) and CD8(+) T cell infiltrate within convex hull defined pancreatic islet borders as autoimmune diabetes progresses. Sci. Rep. 11(1), 17142 (2021). https://doi.org/10.1038/s41598-021-96327-2 V.S. Kumawat, G. Kaur, Therapeutic potential of cannabinoid receptor 2 in the treatment of diabetes mellitus and its complications. Eur. J. Pharm. 862, 172628 (2019). https://doi.org/10.1016/j.ejphar.2019.172628 Y. Peng, D. Wen, F. Lin, R.I. Mahato, Co-delivery of siAlox15 and sunitinib for reversing the new-onset of type 1 diabetes in non-obese diabetic mice. J. Control. Release 292, 1–12 (2018). https://doi.org/10.1016/j.jconrel.2018.10.032 A.E. Ciecko, D.M. Schauder, B. Foda, G. Petrova, M.Y. Kasmani, R. Burns, C.W. Lin, W.R. Drobyski, W. Cui, Y.G. Chen, Self-renewing islet TCF1(+) CD8 T cells undergo IL-27-controlled differentiation to become TCF1(-) terminal effectors during the progression of Type 1 diabetes. J. Immunol. 207(8), 1990–2004 (2021). https://doi.org/10.4049/jimmunol.2100362 H. Sun, K. Zhi, L. Hu, Z. Fan, The activation and regulation of beta2 integrins in phagocytes and phagocytosis. Front. Immunol. 12, 633639 (2021). https://doi.org/10.3389/fimmu.2021.633639 I. Mitroulis, V.I. Alexaki, I. Kourtzelis, A. Ziogas, G. Hajishengallis, T. Chavakis, Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol. Ther. 147, 123–135 (2015). https://doi.org/10.1016/j.pharmthera.2014.11.008 F. Lagarrigue, F.B. Gertler, M.H. Ginsberg, J.M. Cantor, Cutting edge: loss of T Cell RIAM precludes conjugate formation with APC and prevents immune-mediated diabetes. J. Immunol. 198(9), 3410–3415 (2017). https://doi.org/10.4049/jimmunol.1601743 Y. Zhang, R. Xie, H. Zhang, Y. Zheng, C. Lin, L. Yang, M. Huang, M. Li, F. Song, L. Lu, M. Yang, Y. Liu, Q. Wei, J. Li, J. Chen, Integrin beta7 inhibits colorectal cancer pathogenesis via maintaining antitumor immunity. Cancer Immunol. Res. 9(8), 967–980 (2021). https://doi.org/10.1158/2326-6066.CIR-20-0879 X. You, M. Pan, W. Gao, H.S. Shiah, J. Tao, D. Zhang, F. Koumpouras, S. Wang, H. Zhao, J.A. Madri, D. Baker, Y.C. Cheng, Z. Yin, Effects of a novel tylophorine analog on collagen-induced arthritis through inhibition of the innate immune response. Arthritis Rheum. 54(3), 877–886 (2006). https://doi.org/10.1002/art.21640 K.J. Warrington, U. Nair, L.D. Carbone, A.H. Kang, A.E. Postlethwaite, Characterisation of the immune response to type I collagen in scleroderma. Arthritis Res. Ther. 8(4), R136 (2006). https://doi.org/10.1186/ar2025 Y.L. Zhao, W.W. Liu, W. Liu, Z.Y. Lu, D.H. Xuan, X. Zhang, X.L. Liu, T. Hayashi, M. Yamato, T. Ogura, H. Fujisaki, S. Hattori, S.I. Tashiro, S. Onodera, T. Ikejima, Phorbol ester (PMA)-treated U937 cells cultured on type I collagen-coated dish express a lower production of pro-inflammatory cytokines through lowered ROS levels in parallel with cell aggregate formation. Int. Immunopharmacol. 55, 158–164 (2018). https://doi.org/10.1016/j.intimp.2017.12.013 L.A. Llacua, A. Hoek, B.J. de Haan, P. de Vos, Collagen type VI interaction improves human islet survival in immunoisolating microcapsules for treatment of diabetes. Islets 10(2), 60–68 (2018). https://doi.org/10.1080/19382014.2017.1420449 D. Brandhorst, H. Brandhorst, S. Layland, S. Acreman, K. Schenke-Layland, P.R.V. Johnson, nBasement membrane proteins improve human islet survival in hypoxia: implications for islet inflammation. Acta Biomater. 137, 92–102 (2021). https://doi.org/10.1016/j.actbio.2021.10.013 Y. Zhu, S. Chen, W. Liu, L. Zhang, F. Xu, T. Hayashi, K. Mizuno, S. Hattori, H. Fujisaki, and T. Ikejima. Collagens I and V differently regulate the proliferation and adhesion of rat islet INS-1 cells through the integrin β1/E-cadherin/β-catenin pathway. Connect. Tissue Res. 1–13 (2020). https://doi.org/10.1080/03008207.2020.1845321. J. Yang, Y. Sun, X. Liu, F. Xu, W. Liu, T. Hayashi, Y. Imamura, K. Mizuno, S. Hattori, K. Tanaka, H. Fujisaki, S.I. Tashiro, S. Onodera, T. Ikejima, Silibinin’s regulation of proliferation and collagen gene expressions of rat pancreatic beta-cells cultured on types I and V collagen involves beta-catenin nuclear translocation. Connect. Tissue Res. 60(5), 463–476 (2019). https://doi.org/10.1080/03008207.2019.1593393 Y. Li, A.W. Frei, I.M. Labrada, Y. Rong, J.P. Liang, M.M. Samojlik, C. Sun, S. Barash, B.G. Keselowsky, A.L. Bayer, C.L. Stabler, Immunosuppressive PLGA TGF-beta1 microparticles induce polyclonal and antigen-specific regulatory T cells for local immunomodulation of allogeneic islet transplants. Front. Immunol. 12, 653088 (2021). https://doi.org/10.3389/fimmu.2021.653088 G.F. Shpilsky, H. Takahashi, A. Aristarkhova, M. Weil, N. Ng, K.J. Nelson, A. Lee, H. Zheng, W.M. Kuhtreiber, D.L. Faustman, Bacillus Calmette-Guerin ‘s beneficial impact on glucose metabolism: evidence for broad based applications. iScience 24(10), 103150 (2021). https://doi.org/10.1016/j.isci.2021.103150 P.L. Tran, J.H. Kim, Y.H. Jung, D.C. Lee, J.U. Choi, D.N. Le, J.W. Nam, M. Shrestha, J.Y. Kim, T.T. Pham, J.H. Jeong, Prolongation of graft survival via layer-by-layer assembly of collagen and immunosuppressive particles on pancreatic islets. Biomaterials 290, 121804 (2022). https://doi.org/10.1016/j.biomaterials.2022.121804 A. Stylianou, V. Gkretsi, M. Louca, L.C. Zacharia, T. Stylianopoulos, Collagen content and extracellular matrix cause cytoskeletal remodelling in pancreatic fibroblasts. J. R. Soc. Interface 16(154), 20190226 (2019). https://doi.org/10.1098/rsif.2019.0226 S.M. Swain, J.M. Romac, S.R. Vigna, R.A. Liddle, Piezo1-mediated stellate cell activation causes pressure-induced pancreatic fibrosis in mice. JCI Insight 7(8), 158288 (2022). https://doi.org/10.1172/jci.insight.158288 C.X. Li, L.H. Cui, Y.Z. Zhuo, J.G. Hu, N.Q. Cui, S.K. Zhang, Inhibiting autophagy promotes collagen degradation by regulating matrix metalloproteinases in pancreatic stellate cells. Life Sci. 208, 276–283 (2018). https://doi.org/10.1016/j.lfs.2018.07.049 M. Zheng, H. Li, L. Sun, D.R. Brigstock, R. Gao, Interleukin-6 participates in human pancreatic stellate cell activation and collagen I production via TGF-beta1/Smad pathway. Cytokine 143, 155536 (2021). https://doi.org/10.1016/j.cyto.2021.155536 S.K. Zhang, N.Q. Cui, Y.Z. Zhuo, J.G. Hu, J.H. Liu, D.H. Li, L.H. Cui, Modified Xiaochaihu decoction () promotes collagen degradation and inhibits pancreatic fibrosis in chronic pancreatitis rats. Chin. J. Integr. Med. 26(8), 599–603 (2020). https://doi.org/10.1007/s11655-017-2413-0 M.A. Shields, S. Dangi-Garimella, A.J. Redig, H.G. Munshi, Biochemical role of the collagen-rich tumour microenvironment in pancreatic cancer progression. Biochem. J. 441(2), 541–552 (2012). https://doi.org/10.1042/BJ20111240 M.H. Sherman, R.T. Yu, D.D. Engle, N. Ding, A.R. Atkins, H. Tiriac, E.A. Collisson, F. Connor, T. Van Dyke, S. Kozlov, P. Martin, T.W. Tseng, D.W. Dawson, T.R. Donahue, A. Masamune, T. Shimosegawa, M.V. Apte, J.S. Wilson, B. Ng, S.L. Lau, J.E. Gunton, G.M. Wahl, T. Hunter, J.A. Drebin, P.J. O’Dwyer, C. Liddle, D.A. Tuveson, M. Downes, R.M. Evans, Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159(1), 80–93 (2014). https://doi.org/10.1016/j.cell.2014.08.007 A. Zinger, L. Koren, O. Adir, M. Poley, M. Alyan, Z. Yaari, N. Noor, N. Krinsky, A. Simon, H. Gibori, M. Krayem, Y. Mumblat, S. Kasten, S. Ofir, E. Fridman, N. Milman, M.M. Lubtow, L. Liba, J. Shklover, J. Shainsky-Roitman, Y. Binenbaum, D. Hershkovitz, Z. Gil, T. Dvir, R. Luxenhofer, R. Satchi-Fainaro, A. Schroeder, Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano 13(10), 11008–11021 (2019). https://doi.org/10.1021/acsnano.9b02395 T. Kaido, M. Yebra, V. Cirulli, A.M. Montgomery, Regulation of human beta-cell adhesion, motility, and insulin secretion by collagen IV and its receptor alpha1beta1. J. Biol. Chem. 279(51), 53762–53769 (2004). https://doi.org/10.1074/jbc.M411202200 C.S. Wegner, J.V. Gaustad, L.M. Andersen, T.G. Simonsen, E.K. Rofstad, Diffusion-weighted and dynamic contrast-enhanced MRI of pancreatic adenocarcinoma xenografts: associations with tumor differentiation and collagen content. J. Transl. Med. 14(1), 161 (2016). https://doi.org/10.1186/s12967-016-0920-y K.H. Bond, T. Chiba, K.P.H. Wynne, C.P.H. Vary, S. Sims-Lucas, J.M. Coburn, L. Oxburgh, The extracellular matrix environment of clear cell renal cell carcinoma determines cancer associated fibroblast growth. Cancers 13(23), 5873 (2021). https://doi.org/10.3390/cancers13235873