The equivariant triangulation theorem for actions of compact Lie groups
Tài liệu tham khảo
Arhangel'skiî, A.V.: Bicompact sets and the topology of spaces Trans. Moscow Math. Soc.13, 1–62 (1965)
Bredon, G.E.: Introduction to compact transformation groups. New York, London: Academic Press 1972
Cairns, S.S.: Triangulated manifolds and differentiable manifolds. In: Lectures in Topology, pp. 143–157. Ann Arbor: University of Michigan Press. 1941
Conner, P.E., Floyd, E.E.: Differentiable periodic maps. Berlin, Göttingen, Heidelberg, New York: Springer 1964
Engelking, R.: General topology. Warsaw: Polish Scientific Publishers 1977
Illman, S.: Equivariant singular homology and cohomology for actions of compact Lie groups. In: Proceedings of the Second Conference of Compact Transformation Groups (Univ. of Massachusetts, Amherst 1971), Lecture Notes in Mathematics, Vol. 298, pp. 403–415, Berlin, Heidelberg, New York: Springer 1972
Illman, S.: Equivariant algebraic topology. Ph.D. Thesis, Princeton Univ., Princeton, N.J., 1972
Illman, S.: Smooth equivariant triangulations ofG-manifolds forG a finite group Math. Ann.233, 199–220 (1978)
Kelley, J.: General topology Princeton: Van Nostrand 1955
Lellmann, W.: Orbiträume vonG-Mannigfaltigkeiten und stratifizierte Mengen. Diplomarbeit, Bonn 1975
Matumoto, T.: EquivariantK-theory and Fredholm operators. J. Fac. Sci. Univ. Tokyo Sect. I A Math.18, 109–125 (1971)
Matumoto, T.: OnG-CW complexes and a theorem of J.H.C. Whitehead. J. Fac. Sci. Univ. Tokyo Sect. I A Math.18, 363–374 (1971)
Munkres, J.R.: Elementary differential topology. Rev. Edit. Ann. of Math. Studies, No. 54. Princeton: Princeton University Press 1966
Palais, R.S.: The classification ofG-spaces. Mem. Am. Math. Soc.36, 1–72 (1960)
Verona, A.: Triangulation of stratified fibre bundles. Manuscripta Math.30, 425–445 (1980)
Yang, C.T.: The triangulability of the orbit space of a differentiable transformation group. Bull. Am. Math. Soc.69, 405–408 (1963)