Lattice Boltzmann simulations of thermal convective flows in two dimensions

Computers & Mathematics with Applications - Tập 65 - Trang 262-286 - 2013
Jia Wang1, Donghai Wang1, Pierre Lallemand2, Li-Shi Luo3,2
1State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
2Beijing Computational Science Research Center, Beijing 100084, China
3Department of Mathematics & Statistics and Center for Computational Sciences, Old Dominion University, Norfolk, VA 23529, USA

Tài liệu tham khảo

Yu, 2003, Viscous flow computations with the method of lattice Boltzmann equation, Prog. Aerospace Sci., 39, 329, 10.1016/S0376-0421(03)00003-4 Luo, 2010, Lattice Boltzmann method for computational fluid dynamics, 651 Alexander, 1993, Lattice Boltzmann thermohydrodynamics, Phys. Rev. E, 47, R2249, 10.1103/PhysRevE.47.R2249 McNamara, 1993, Analysis of the lattice Boltzmann treatment of hydrodynamics, Physica A, 194, 218, 10.1016/0378-4371(93)90356-9 Chen, 1995, Heat-transfer in lattice BGK modeled fluid, J. Stat. Phys., 81, 71, 10.1007/BF02179969 McNamara, 1995, Stabilization of thermal lattice Boltzmann models, J. Stat. Phys., 81, 395, 10.1007/BF02179986 McNamara, 1997, A hydrodynamically correct thermal lattice Boltzmann model, J. Stat. Phys., 87, 1111, 10.1007/BF02181274 Lallemand, 2003, Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions, Phys. Rev. E, 68, 036706, 10.1103/PhysRevE.68.036706 Eggels, 1995, Numerical-simulation of free convective flow using the lattice-Boltzmann scheme, Int. J. Heat Fluid Flow, 16, 357, 10.1016/0142-727X(95)00052-R He, 1997, A priori derivation of the lattice Boltzmann equation, Phys. Rev. E, 55, R6333, 10.1103/PhysRevE.55.R6333 He, 1997, Theory of lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 56, 6811, 10.1103/PhysRevE.56.6811 He, 1998, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., 146, 282, 10.1006/jcph.1998.6057 Guo, 2002, A coupled lattice BGK model for the Boussinesq equations, Int. J. Numer. Meth. Fluids, 39, 325, 10.1002/fld.337 Guo, 2007, Thermal lattice Boltzmann equation for low Mach number flows: decoupling model, Phys. Rev. E, 75, 036704, 10.1103/PhysRevE.75.036704 Lallemand, 2003, Hybrid finite-difference thermal lattice Boltzmann equation, Int. J. Mod. Phys. B, 17, 41, 10.1142/S0217979203017060 Lallemand, 2000, Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 61, 6546, 10.1103/PhysRevE.61.6546 d’Humières, 2002, Multiple-relaxation-time lattice Boltzmann models in three-dimensions, Philos. Trans. R. Soc. Lond. A, 360, 437, 10.1098/rsta.2001.0955 Luo, 2011, Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations, Phys. Rev. E, 83, 056710, 10.1103/PhysRevE.83.056710 d’Humières, 1992, Generalized lattice-Boltzmann equations, Vol. 159, 450 Ginzburg, 2005, Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation, Adv. Water Res., 28, 1171, 10.1016/j.advwatres.2005.03.004 Ginzburg, 2005, Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations, Adv. Water Res., 28, 1196, 10.1016/j.advwatres.2005.03.009 Ginzburg, 2006, Variably saturated flow described with the anisotropic lattice Boltzmann methods, Comput. Fluids, 35, 831, 10.1016/j.compfluid.2005.11.001 Ginzburg, 2007, Lattice Boltzmann modeling with discontinuous collision components: hydrodynamic and advection–diffusion equations, J. Stat. Phys., 126, 157, 10.1007/s10955-006-9234-4 Ginzburg, 2007, Lattice Boltzmann and analytical modeling of flow processes in anisotropic and heterogeneous stratified aquifers, Adv. Water Res., 30, 2202, 10.1016/j.advwatres.2007.05.001 Ginzbourg, 1996, Local second-order boundary methods for lattice Boltzmann models, J. Stat. Phys., 84, 927, 10.1007/BF02174124 Ginzburg, 2003, Multireflection boundary conditions for lattice Boltzmann models, Phys. Rev. E, 68, 066614, 10.1103/PhysRevE.68.066614 Lockard, 2002, Evaluation of PowerFLOW for aerodynamic applications, J. Stat. Phys., 107, 423, 10.1023/A:1014539411062 Pan, 2006, An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Comput. Fluids, 35, 898, 10.1016/j.compfluid.2005.03.008 P. Dellar, An interpretation and derivation of the lattice Boltzmann method using Strang splitting, Comput. Math. Appl. (2011) published online (http://dx.doi.org/10.1016/j.camwa.2011.08.047). Ginzbourg, 1994, Boundary flow condition analysis for the three-dimensional lattice Boltzmann model, J. Phys. II, 4, 191 Ginzburg, 2008, Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions, Commun. Comput. Phys., 3, 427 Ginzburg, 2008, Study of simple hydrodynamic solutions with the two-relaxation-times lattice Boltzmann scheme, Commun. Comput. Phys., 3, 519 Ginzburg, 2010, Optimal stability of advection–diffusion lattice Boltzmann models with two relaxation times for positive/negative equilibrium, J. Stat. Phys., 139, 1090, 10.1007/s10955-010-9969-9 Kuzmin, 2011, The role of the kinetic parameter in the stability of two-relaxation-time advection–diffusion lattice Boltzmann schemes, Comput. Math. Appl., 61, 3417, 10.1016/j.camwa.2010.07.036 Ginzburg, 2012, Truncation errors, exact and heuristic stability analysis of two-relaxation-times lattice Boltzmann schemes for anisotropic advection–diffusion equation, Commun. Comput. Phys., 11, 1439, 10.4208/cicp.211210.280611a Luo, 1998, Unified theory of the lattice Boltzmann models for nonideal gases, Phys. Rev. Lett., 81, 1618, 10.1103/PhysRevLett.81.1618 Guo, 2002, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E, 65, 046308, 10.1103/PhysRevE.65.046308 de Vahl Davis, 1983, Natural-convection in a square cavity: a comparison exercise, Int. J. Numer. Meth. Fluids, 3, 227, 10.1002/fld.1650030304 de Vahl Davis, 1983, Natural-convection of air in a square cavity: a bench-mark numerical-solution, Int. J. Numer. Meth. Fluids, 3, 249, 10.1002/fld.1650030305 Yu, 2012, Compact computations based on a stream-function-velocity formulation of two-dimensional steady laminar natural convection in a square cavity, Phys. Rev. E, 85, 036703, 10.1103/PhysRevE.85.036703 Mayne, 2000, h-adaptive finite element solution of high Rayleigh number thermally driven cavity problem, Int. J. Numer. Meth. Heat Fluid Flow, 10, 598, 10.1108/09615530010347187 Hortmann, 1990, Finite volume multigrid prediction of laminar natural-convection: bench-mark solutions, Int. J. Numer. Meth. Fluids, 11, 189, 10.1002/fld.1650110206 Croce, 2000, Incompressible flow and heat transfer computations using a continuous pressure equation and nonstaggered grids, Numer. Heat Transfer B, 38, 291, 10.1080/10407790050192780 Le Quéré, 1985, Computation of natural convection in two-dimensional cavities with Chebyshev polynomials, J. Comput. Phys., 57, 210, 10.1016/0021-9991(85)90043-9 Le Quéré, 1991, Accurate solutions to the square thermally driven cavity at high Rayleigh number, Comput. Fluids, 20, 29, 10.1016/0045-7930(91)90025-D Gelfgat, 2006, Implementation of arbitrary inner product in the global Galerkin method for incompressible Navier–Stokes equations, J. Comput. Phys., 211, 513, 10.1016/j.jcp.2005.06.002 Giesdal, 2006, Spectral element benchmark simulations of natural convection in two-dimensional cavities, Int. J. Numer. Meth. Fluids, 50, 1297, 10.1002/fld.1121 Hou, 1995, Simulation of cavity flow by the lattice Boltzmann method, J. Comput. Phys., 118, 329, 10.1006/jcph.1995.1103 Dellar, 2001, Bulk and shear viscosities in lattice Boltzmann equations, Phys. Rev. E, 64, 031203, 10.1103/PhysRevE.64.031203 Dellar, 2003, Incompressible limits of lattice Boltzmann equations using multiple relaxation times, J. Comput. Phys., 190, 351, 10.1016/S0021-9991(03)00279-1 Mezrhab, 2004, Hybrid lattice-Boltzmann finite-difference simulation of convective flows, Comput. Fluids, 33, 623, 10.1016/j.compfluid.2003.05.001 Reid, 1958, Some further results on the Bénard problem, Phys. Fluids, 1, 102, 10.1063/1.1705871 Clever, 1974, Transition to time-dependent convection, J. Fluid Mech., 65, 625, 10.1017/S0022112074001571