Lattice Boltzmann simulations of thermal convective flows in two dimensions
Tài liệu tham khảo
Yu, 2003, Viscous flow computations with the method of lattice Boltzmann equation, Prog. Aerospace Sci., 39, 329, 10.1016/S0376-0421(03)00003-4
Luo, 2010, Lattice Boltzmann method for computational fluid dynamics, 651
Alexander, 1993, Lattice Boltzmann thermohydrodynamics, Phys. Rev. E, 47, R2249, 10.1103/PhysRevE.47.R2249
McNamara, 1993, Analysis of the lattice Boltzmann treatment of hydrodynamics, Physica A, 194, 218, 10.1016/0378-4371(93)90356-9
Chen, 1995, Heat-transfer in lattice BGK modeled fluid, J. Stat. Phys., 81, 71, 10.1007/BF02179969
McNamara, 1995, Stabilization of thermal lattice Boltzmann models, J. Stat. Phys., 81, 395, 10.1007/BF02179986
McNamara, 1997, A hydrodynamically correct thermal lattice Boltzmann model, J. Stat. Phys., 87, 1111, 10.1007/BF02181274
Lallemand, 2003, Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions, Phys. Rev. E, 68, 036706, 10.1103/PhysRevE.68.036706
Eggels, 1995, Numerical-simulation of free convective flow using the lattice-Boltzmann scheme, Int. J. Heat Fluid Flow, 16, 357, 10.1016/0142-727X(95)00052-R
He, 1997, A priori derivation of the lattice Boltzmann equation, Phys. Rev. E, 55, R6333, 10.1103/PhysRevE.55.R6333
He, 1997, Theory of lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 56, 6811, 10.1103/PhysRevE.56.6811
He, 1998, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., 146, 282, 10.1006/jcph.1998.6057
Guo, 2002, A coupled lattice BGK model for the Boussinesq equations, Int. J. Numer. Meth. Fluids, 39, 325, 10.1002/fld.337
Guo, 2007, Thermal lattice Boltzmann equation for low Mach number flows: decoupling model, Phys. Rev. E, 75, 036704, 10.1103/PhysRevE.75.036704
Lallemand, 2003, Hybrid finite-difference thermal lattice Boltzmann equation, Int. J. Mod. Phys. B, 17, 41, 10.1142/S0217979203017060
Lallemand, 2000, Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 61, 6546, 10.1103/PhysRevE.61.6546
d’Humières, 2002, Multiple-relaxation-time lattice Boltzmann models in three-dimensions, Philos. Trans. R. Soc. Lond. A, 360, 437, 10.1098/rsta.2001.0955
Luo, 2011, Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations, Phys. Rev. E, 83, 056710, 10.1103/PhysRevE.83.056710
d’Humières, 1992, Generalized lattice-Boltzmann equations, Vol. 159, 450
Ginzburg, 2005, Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation, Adv. Water Res., 28, 1171, 10.1016/j.advwatres.2005.03.004
Ginzburg, 2005, Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations, Adv. Water Res., 28, 1196, 10.1016/j.advwatres.2005.03.009
Ginzburg, 2006, Variably saturated flow described with the anisotropic lattice Boltzmann methods, Comput. Fluids, 35, 831, 10.1016/j.compfluid.2005.11.001
Ginzburg, 2007, Lattice Boltzmann modeling with discontinuous collision components: hydrodynamic and advection–diffusion equations, J. Stat. Phys., 126, 157, 10.1007/s10955-006-9234-4
Ginzburg, 2007, Lattice Boltzmann and analytical modeling of flow processes in anisotropic and heterogeneous stratified aquifers, Adv. Water Res., 30, 2202, 10.1016/j.advwatres.2007.05.001
Ginzbourg, 1996, Local second-order boundary methods for lattice Boltzmann models, J. Stat. Phys., 84, 927, 10.1007/BF02174124
Ginzburg, 2003, Multireflection boundary conditions for lattice Boltzmann models, Phys. Rev. E, 68, 066614, 10.1103/PhysRevE.68.066614
Lockard, 2002, Evaluation of PowerFLOW for aerodynamic applications, J. Stat. Phys., 107, 423, 10.1023/A:1014539411062
Pan, 2006, An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Comput. Fluids, 35, 898, 10.1016/j.compfluid.2005.03.008
P. Dellar, An interpretation and derivation of the lattice Boltzmann method using Strang splitting, Comput. Math. Appl. (2011) published online (http://dx.doi.org/10.1016/j.camwa.2011.08.047).
Ginzbourg, 1994, Boundary flow condition analysis for the three-dimensional lattice Boltzmann model, J. Phys. II, 4, 191
Ginzburg, 2008, Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions, Commun. Comput. Phys., 3, 427
Ginzburg, 2008, Study of simple hydrodynamic solutions with the two-relaxation-times lattice Boltzmann scheme, Commun. Comput. Phys., 3, 519
Ginzburg, 2010, Optimal stability of advection–diffusion lattice Boltzmann models with two relaxation times for positive/negative equilibrium, J. Stat. Phys., 139, 1090, 10.1007/s10955-010-9969-9
Kuzmin, 2011, The role of the kinetic parameter in the stability of two-relaxation-time advection–diffusion lattice Boltzmann schemes, Comput. Math. Appl., 61, 3417, 10.1016/j.camwa.2010.07.036
Ginzburg, 2012, Truncation errors, exact and heuristic stability analysis of two-relaxation-times lattice Boltzmann schemes for anisotropic advection–diffusion equation, Commun. Comput. Phys., 11, 1439, 10.4208/cicp.211210.280611a
Luo, 1998, Unified theory of the lattice Boltzmann models for nonideal gases, Phys. Rev. Lett., 81, 1618, 10.1103/PhysRevLett.81.1618
Guo, 2002, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E, 65, 046308, 10.1103/PhysRevE.65.046308
de Vahl Davis, 1983, Natural-convection in a square cavity: a comparison exercise, Int. J. Numer. Meth. Fluids, 3, 227, 10.1002/fld.1650030304
de Vahl Davis, 1983, Natural-convection of air in a square cavity: a bench-mark numerical-solution, Int. J. Numer. Meth. Fluids, 3, 249, 10.1002/fld.1650030305
Yu, 2012, Compact computations based on a stream-function-velocity formulation of two-dimensional steady laminar natural convection in a square cavity, Phys. Rev. E, 85, 036703, 10.1103/PhysRevE.85.036703
Mayne, 2000, h-adaptive finite element solution of high Rayleigh number thermally driven cavity problem, Int. J. Numer. Meth. Heat Fluid Flow, 10, 598, 10.1108/09615530010347187
Hortmann, 1990, Finite volume multigrid prediction of laminar natural-convection: bench-mark solutions, Int. J. Numer. Meth. Fluids, 11, 189, 10.1002/fld.1650110206
Croce, 2000, Incompressible flow and heat transfer computations using a continuous pressure equation and nonstaggered grids, Numer. Heat Transfer B, 38, 291, 10.1080/10407790050192780
Le Quéré, 1985, Computation of natural convection in two-dimensional cavities with Chebyshev polynomials, J. Comput. Phys., 57, 210, 10.1016/0021-9991(85)90043-9
Le Quéré, 1991, Accurate solutions to the square thermally driven cavity at high Rayleigh number, Comput. Fluids, 20, 29, 10.1016/0045-7930(91)90025-D
Gelfgat, 2006, Implementation of arbitrary inner product in the global Galerkin method for incompressible Navier–Stokes equations, J. Comput. Phys., 211, 513, 10.1016/j.jcp.2005.06.002
Giesdal, 2006, Spectral element benchmark simulations of natural convection in two-dimensional cavities, Int. J. Numer. Meth. Fluids, 50, 1297, 10.1002/fld.1121
Hou, 1995, Simulation of cavity flow by the lattice Boltzmann method, J. Comput. Phys., 118, 329, 10.1006/jcph.1995.1103
Dellar, 2001, Bulk and shear viscosities in lattice Boltzmann equations, Phys. Rev. E, 64, 031203, 10.1103/PhysRevE.64.031203
Dellar, 2003, Incompressible limits of lattice Boltzmann equations using multiple relaxation times, J. Comput. Phys., 190, 351, 10.1016/S0021-9991(03)00279-1
Mezrhab, 2004, Hybrid lattice-Boltzmann finite-difference simulation of convective flows, Comput. Fluids, 33, 623, 10.1016/j.compfluid.2003.05.001
Reid, 1958, Some further results on the Bénard problem, Phys. Fluids, 1, 102, 10.1063/1.1705871
Clever, 1974, Transition to time-dependent convection, J. Fluid Mech., 65, 625, 10.1017/S0022112074001571
