Hopper discharge of elongated particles of varying aspect ratio: Experiments and DEM simulations

Chemical Engineering Science: X - Tập 4 - Trang 100040 - 2019
Henna Tangri1, Yu Guo2, Jennifer S. Curtis3
1Chemical Engineering Department, University of Florida, Building No. 723, Gainesville, FL 32603, United States
2School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310058, China
3College of Engineering, University of California, Davis, Davis, CA 95616, United States

Tài liệu tham khảo

Anand, 2008, Predicting discharge dynamics from a rectangular hopper using the discrete element method (DEM), Chem. Eng. Sci., 63, 5821, 10.1016/j.ces.2008.08.015 Baosheng, 2010, Flow behaviors of non-spherical granules in rectangular hopper, Chin. J. Chem. Eng., 18, 931, 10.1016/S1004-9541(09)60150-6 Beverloo, 1961, The flow of granular solids through orifices, Chem. Eng. Sci., 15, 260, 10.1016/0009-2509(61)85030-6 Brown, 1960, Profile of flow of granules through apertures, Trans. Instit. Chem. Eng., 38, 243 Brown, 1965, Kinematics of the flow of dry powders and bulk solids, Rheol. Acta, 4, 153, 10.1007/BF01969251 Chung, 2008, Influence of discrete element model parameters on bulk behavior of a granular solid under confined compression, Part. Sci. Technol., 26, 83, 10.1080/02726350701759381 Cleary, 2002, DEM modeling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge, Appl. Math. Model., 26, 89, 10.1016/S0307-904X(01)00050-6 Dhodapkar S., Jacob K. Kodam M., 2016. Determining Discharge Rates of Particulate Solids, Fluid and Solids Handling. Fowler, 1959, The flow of granular solids through orifices, Chem. Eng. Sci., 10, 150, 10.1016/0009-2509(59)80042-7 Gui, 2008, DEM–LES study of 3-D bubbling fluidized bed with immersed tubes, Chem. Eng. Sci., 63, 3654, 10.1016/j.ces.2008.04.038 Guo, Y., Wassgren, W., Ketterhagen, W., Hancock, B., Curtis, J., 2012. Some computational considerations associated with discrete element modelling of cylindrical particles. Hohner, 2012, A numerical study on the influence of particle shape on hopper discharge within the polyhedral and multi-sphere discrete element method, Powder Technol., 226, 16, 10.1016/j.powtec.2012.03.041 Hohner, 2013, Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method, Powder Technol., 235, 614, 10.1016/j.powtec.2012.11.004 Janssen, 1895, Versuche über getreidedruck in silozellen, Zeitschrift des Vereines der Deutschen Ingenieure, 39, 1045 Jin, 2010, Flow behaviors of non-spherical granules in rectangular hopper, Chin. J. Chem. Eng., 18, 931, 10.1016/S1004-9541(09)60150-6 Ketterhagen, 2008, Modeling granular segregation in flow from quasi-three-dimensional, wedge-shaped hoppers, Powder Technol., 179, 126, 10.1016/j.powtec.2007.06.023 Kodam, 2010, Cylindrical object contact detection for use in discrete element method simulations. Part II – Experimental Validation, Chem. Eng. Sci., 65, 5863, 10.1016/j.ces.2010.08.007 Kuang, 2008, Computational investigation of horizontal slug flow in pneumatic conveying, Ind. Eng. Chem. Res., 47, 470, 10.1021/ie070991q Langmaid, 1957, J Inst. Fuel, 30, 166 Langston, P.A., Tuzon, U., Heyes, D. M., 1995. Discrete element simulation of granular flow in 2D and 3D hoppers: Dependence of discharge rate and wall stress on particle interactions. Pergamon-2509(94)00467-6. Li, 2006, Simulation of colloidal particle packing for photonic bandgap crystals, J. Am. Ceram. Soc., 89, 1257, 10.1111/j.1551-2916.2005.00889.x Li, 2004, Flow of sphero-disc particles in rectangular hoppers—a DEM and experimental comparison in 3D, Chem. Eng. Sci., 59, 5917, 10.1016/j.ces.2004.07.022 Lim, 2006, Discrete element simulation for pneumatic conveying of granular material, AIChE J., 52, 496, 10.1002/aic.10645 Liu, 2014, Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper, Powder Technol., 253, 70, 10.1016/j.powtec.2013.11.001 Mehrotra, 2009, A modeling approach for understanding effects of powder flow properties on tablet weight variability, Powder Technol., 188, 295, 10.1016/j.powtec.2008.05.016 Myers, 1971 Nedderman, 1982, The flow of granular materials I: discharge rates from hoppers, Chem. Eng. Sci., 37, 1597, 10.1016/0009-2509(82)80029-8 Rosato, 2008, On the calculation of self-diffusion in vertically agitated granular beds, Powder Technol., 182, 228, 10.1016/j.powtec.2007.08.003 Sukumaran, 2003, Influence of inherent particle characteristics on hopper flow rate, Powder Technol., 138, 46, 10.1016/j.powtec.2003.08.039 Tangri, H., Yu Guo, J., 2017. Curtis, Packing of Elongated Particles – DEM Simulations and Experiments. Tao, 2010, Discrete element method modeling of non-spherical granular flow in rectangular hopper, Chem. Eng. Process., 49, 151, 10.1016/j.cep.2010.01.006 Tsuji, 2008, Spontaneous structures in threedimensional bubbling gas-fluidized bed by parallel DEM–CFD coupling simulation, Powder Technol., 184, 132, 10.1016/j.powtec.2007.11.042 Tuzun, 2004, Analysis of the evolution of granular stress-strain and voidage states based on DEM simulations, Philosoph. Trans. R. Soc. Lond. Ser. A – Math. Phys. Eng. Sci., 362, 1931, 10.1098/rsta.2004.1424 Yang, 2008, Characterization of interparticle forces in the packing of cohesive fine particles, Phys. Rev., E78 Zeilstra, 2008, Simulation of density segregation in vibrated beds, Phys. Rev. E, 77, 10.1103/PhysRevE.77.031309 Zhou, 2003, Stress distribution in a sandpile formed on a deflated base, Adv. Powder Technol., 14, 401, 10.1163/156855203769710636 Zhu, 2008, Discrete particle simulation of particulate systems: A review of major applications and findings, Chem. Eng. Sci., 63, 5728, 10.1016/j.ces.2008.08.006