Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell

Journal of Hazardous Materials - Tập 189 - Trang 186-192 - 2011
Hu-Chun Tao1,2, Min Liang1,2, Wei Li1,2, Li-Juan Zhang1,2, Jin-Ren Ni1,2, Wei-Min Wu3
1Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
2Key Laboratory for Water and Sediment Sciences of Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
3Department of Civil & Environmental Engineering, Stanford University, Stanford, CA 94305-4020, USA

Tài liệu tham khảo

Zamani, 2007, Determination of copper(II) in wastewater by electroplating samples using a PVC-membrane copper(II)-selective electrode, J. Anal. Chem., 62, 1080, 10.1134/S1061934807110135 Aston, 2010, Effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13, J. Hazard. Mater., 184, 34, 10.1016/j.jhazmat.2010.07.110 Hao, 2010, Effective removal of Cu(II) ions from aqueous solution by amino-functionalized magnetic nanoparticles, J. Hazard. Mater., 184, 392, 10.1016/j.jhazmat.2010.08.048 Jha, 2008, Sorption properties of the activated carbon–zeolite composite prepared from coal fly ash for Ni2+, Cu2+, Cd2+ and Pb2+, J. Hazard. Mater., 160, 148, 10.1016/j.jhazmat.2008.02.107 Machado, 2010, Selective recovery of copper, nickel and zinc from ashes produced from Saccharomyces cerevisiae contaminated biomass used in the treatment of real electroplating effluents, J. Hazard. Mater., 184, 357, 10.1016/j.jhazmat.2010.08.044 Solisio, 1999, Electrochemical remediation of copper(II) from an industrial effluent. Part I: monopolar plate electrodes, Resour. Conserv. Recy., 26, 115, 10.1016/S0921-3449(98)00078-0 Panizza, 1999, Electrochemical remediation of copper(II) from an industrial effluent. Part II: three-dimensional foam electrodes, Resour. Conserv. Recy., 27, 299, 10.1016/S0921-3449(99)00002-6 Pak, 2001, Design parameters for an electrochemical cell with porous electrode to treat metal-ion solution, Water Res., 35, 57, 10.1016/S0043-1354(00)00253-0 Juang, 2000, Treatment of complexed copper(II) solutions with electrochemical membrane processes, Water Res., 34, 43, 10.1016/S0043-1354(99)00112-8 Yazicigil, 2009, Investigation of the separation of metal mixtures using cation-exchange membranes, Desalination, 245, 306, 10.1016/j.desal.2008.07.014 Kim, 2005, Evaluation of procedures to acclimate a microbial fuel cell for electricity production, Appl. Microbiol. Biotechnol., 68, 23, 10.1007/s00253-004-1845-6 Rabaey, 2007, Microbial ecology meets electrochemistry: electricity-driven and driving communities, ISME J., 1, 9, 10.1038/ismej.2007.4 Logan, 2005, Electricity generation from cysteine in a microbial fuel cell, Water Res., 39, 942, 10.1016/j.watres.2004.11.019 Logan, 2006, Microbial fuel cells: methodology and technology, Environ. Sci. Technol., 40, 5181, 10.1021/es0605016 Min, 2005, Electricity generation from swine wastewater using microbial fuel cells, Water Res., 39, 4961, 10.1016/j.watres.2005.09.039 Park, 2003, Improved fuel cell and electrode designs for producing electricity from microbial degradation, Biotechnol. Bioeng., 81, 348, 10.1002/bit.10501 Kim, 2007, Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells, Environ. Sci. Technol., 41, 1004, 10.1021/es062202m Li, 2009, Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells, Electrochem. Commun., 11, 1496, 10.1016/j.elecom.2009.05.039 Wang, 2008, Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells, Biotechnol. Lett., 30, 1959, 10.1007/s10529-008-9792-4 Li, 2008, Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell, Process Biochem., 43, 1352, 10.1016/j.procbio.2008.08.005 Tandukar, 2009, Biological chromium(VI) reduction in the cathode of a microbial fuel cell, Environ. Sci. Technol., 43, 8159, 10.1021/es9014184 Terheijne, 2006, A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells, Environ. Sci. Technol., 40, 5200, 10.1021/es0608545 Ter Heijne, 2007, Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte, Environ. Sci. Technol., 41, 4130, 10.1021/es0702824 Thauer, 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev., 41, 100, 10.1128/MMBR.41.1.100-180.1977 Lide, 1991 Yu, 2010, Electrodeposition of submicron/nanoscale Cu2O/Cu junctions in an ultrathin CuSO4 solution layer, J. Electroanal. Chem., 638, 225, 10.1016/j.jelechem.2009.11.004 Rabaey, 2003, A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnol. Lett., 25, 1531, 10.1023/A:1025484009367 Bohannan, 1999, In situ electrochemical quartz crystal microbalance study of potential oscillations during the electrodeposition of Cu/Cu2O layered nanostructures, Langmuir, 15, 813, 10.1021/la980825a Switzer, 1997, Electrodeposition of quantum-confined metal semiconductor nanocomposites, Adv. Mater., 9, 334, 10.1002/adma.19970090411 Dutta, 2009, Role of sulfur during acetate oxidation in biological anodes, Environ. Sci. Technol., 43, 3839, 10.1021/es803682k Wang, 2010, A rapid selection strategy for an anodophilic consortium for microbial fuel cells, Bioresour. Technol., 101, 5733, 10.1016/j.biortech.2010.02.056