Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell
Tài liệu tham khảo
Zamani, 2007, Determination of copper(II) in wastewater by electroplating samples using a PVC-membrane copper(II)-selective electrode, J. Anal. Chem., 62, 1080, 10.1134/S1061934807110135
Aston, 2010, Effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13, J. Hazard. Mater., 184, 34, 10.1016/j.jhazmat.2010.07.110
Hao, 2010, Effective removal of Cu(II) ions from aqueous solution by amino-functionalized magnetic nanoparticles, J. Hazard. Mater., 184, 392, 10.1016/j.jhazmat.2010.08.048
Jha, 2008, Sorption properties of the activated carbon–zeolite composite prepared from coal fly ash for Ni2+, Cu2+, Cd2+ and Pb2+, J. Hazard. Mater., 160, 148, 10.1016/j.jhazmat.2008.02.107
Machado, 2010, Selective recovery of copper, nickel and zinc from ashes produced from Saccharomyces cerevisiae contaminated biomass used in the treatment of real electroplating effluents, J. Hazard. Mater., 184, 357, 10.1016/j.jhazmat.2010.08.044
Solisio, 1999, Electrochemical remediation of copper(II) from an industrial effluent. Part I: monopolar plate electrodes, Resour. Conserv. Recy., 26, 115, 10.1016/S0921-3449(98)00078-0
Panizza, 1999, Electrochemical remediation of copper(II) from an industrial effluent. Part II: three-dimensional foam electrodes, Resour. Conserv. Recy., 27, 299, 10.1016/S0921-3449(99)00002-6
Pak, 2001, Design parameters for an electrochemical cell with porous electrode to treat metal-ion solution, Water Res., 35, 57, 10.1016/S0043-1354(00)00253-0
Juang, 2000, Treatment of complexed copper(II) solutions with electrochemical membrane processes, Water Res., 34, 43, 10.1016/S0043-1354(99)00112-8
Yazicigil, 2009, Investigation of the separation of metal mixtures using cation-exchange membranes, Desalination, 245, 306, 10.1016/j.desal.2008.07.014
Kim, 2005, Evaluation of procedures to acclimate a microbial fuel cell for electricity production, Appl. Microbiol. Biotechnol., 68, 23, 10.1007/s00253-004-1845-6
Rabaey, 2007, Microbial ecology meets electrochemistry: electricity-driven and driving communities, ISME J., 1, 9, 10.1038/ismej.2007.4
Logan, 2005, Electricity generation from cysteine in a microbial fuel cell, Water Res., 39, 942, 10.1016/j.watres.2004.11.019
Logan, 2006, Microbial fuel cells: methodology and technology, Environ. Sci. Technol., 40, 5181, 10.1021/es0605016
Min, 2005, Electricity generation from swine wastewater using microbial fuel cells, Water Res., 39, 4961, 10.1016/j.watres.2005.09.039
Park, 2003, Improved fuel cell and electrode designs for producing electricity from microbial degradation, Biotechnol. Bioeng., 81, 348, 10.1002/bit.10501
Kim, 2007, Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells, Environ. Sci. Technol., 41, 1004, 10.1021/es062202m
Li, 2009, Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells, Electrochem. Commun., 11, 1496, 10.1016/j.elecom.2009.05.039
Wang, 2008, Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells, Biotechnol. Lett., 30, 1959, 10.1007/s10529-008-9792-4
Li, 2008, Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell, Process Biochem., 43, 1352, 10.1016/j.procbio.2008.08.005
Tandukar, 2009, Biological chromium(VI) reduction in the cathode of a microbial fuel cell, Environ. Sci. Technol., 43, 8159, 10.1021/es9014184
Terheijne, 2006, A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells, Environ. Sci. Technol., 40, 5200, 10.1021/es0608545
Ter Heijne, 2007, Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte, Environ. Sci. Technol., 41, 4130, 10.1021/es0702824
Thauer, 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev., 41, 100, 10.1128/MMBR.41.1.100-180.1977
Lide, 1991
Yu, 2010, Electrodeposition of submicron/nanoscale Cu2O/Cu junctions in an ultrathin CuSO4 solution layer, J. Electroanal. Chem., 638, 225, 10.1016/j.jelechem.2009.11.004
Rabaey, 2003, A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnol. Lett., 25, 1531, 10.1023/A:1025484009367
Bohannan, 1999, In situ electrochemical quartz crystal microbalance study of potential oscillations during the electrodeposition of Cu/Cu2O layered nanostructures, Langmuir, 15, 813, 10.1021/la980825a
Switzer, 1997, Electrodeposition of quantum-confined metal semiconductor nanocomposites, Adv. Mater., 9, 334, 10.1002/adma.19970090411
Dutta, 2009, Role of sulfur during acetate oxidation in biological anodes, Environ. Sci. Technol., 43, 3839, 10.1021/es803682k
Wang, 2010, A rapid selection strategy for an anodophilic consortium for microbial fuel cells, Bioresour. Technol., 101, 5733, 10.1016/j.biortech.2010.02.056