Effects of nano-fluid and surfaces with nano structure on the increase of CHF
Tài liệu tham khảo
E. Hahne, T. Diesselhorst, Hydrodynamic and surface effects on the peak heat flux in pool boiling, in: Proceedings of the Sixth International Heat Transfer Conference, vol. 1, 1978, pp. 209–214.
Chowdhury, 1985, Surface effects in pool boiling, Int. J. Heat Mass Transfer, 28, 1881, 10.1016/0017-9310(85)90210-8
S. Liaw, V.K. Dhir, Effect of surface wettability on transition boiling heat transfer from a vertical surface, in: Proceedings of the Eighth International Heat Transfer Conference, 1986, pp. 2031–2036.
Ferjancic, 2002, Surface effects on pool boiling CHF, Exp. Therm. Fluid Sci., 25, 565, 10.1016/S0894-1777(01)00104-2
Takata, 2003, Pool boiling on a superhydrophilic surface, Int. J. Energy Res., 27, 111, 10.1002/er.861
Anderson, 1989, Microelectronic cooling by enhanced pool boiling of a dielectric fluorocarbon liquid, J. Heat Transfer, 111, 752, 10.1115/1.3250747
Wenzel, 1949, Surface roughness and contact angle, J. Phys. Colloid Chem., 53, 1466, 10.1021/j150474a015
Marto, 1982, Pool boiling heat transfer from enhanced surfaces to dielectric fluids, J. Heat Transfer, 104, 292, 10.1115/1.3245086
Messina, 1981, Effects of precise arrays of pits on nucleate boiling, Int. J. Heat Mass Transfer, 24, 141, 10.1016/0017-9310(81)90102-2
Yu, 2006, Pool boiling heat transfer on artificial micro-cavity surfaces in dielectric fluid FC-72, J. Micromech. Microeng., 16, 2092, 10.1088/0960-1317/16/10/024
Costello, 1965, The roles of capillary wicking and surface deposits in the attainment of high pool boiling burnout heat fluxes, AIChE J., 10, 393, 10.1002/aic.690100322
Corman, 1976, Boiling augmentation with structured surfaces, ASHRAE Trans., 906
Afgan, 1985, Boiling heat transfer from surfaces with porous layers, Int. J. Heat Mass Transfer, 28, 415, 10.1016/0017-9310(85)90074-2
Hwang, 2006, Critical heat flux in thin, uniform particle coatings, Int. J. Heat Mass Transfer, 49, 844, 10.1016/j.ijheatmasstransfer.2005.09.020
Choi, 2008, Nanofluids: a new filed of scientific research and innovative applications, Heat Transfer Eng., 29, 429, 10.1080/01457630701850778
You, 2003, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Appl. Phys. Lett., 83, 3374, 10.1063/1.1619206
Vassallo, 2004, Pool boiling heat transfer experiments in silica–water nano-fluids, Int. J. Heat Mass Transfer, 47, 407, 10.1016/S0017-9310(03)00361-2
Milanova, 2005, Role of ions in pool boiling heat transfer of pure and silica nanofluids, Appl. Phys. Lett., 87, 233107, 10.1063/1.2138805
Kim, 2006, Experimental study on CHF characteristics of water–TiO2 nano-fluids, Nuclear Eng. Tech., 38, 61
Kim, 2006, Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids, Appl. Phys. Lett., 89, 153107, 10.1063/1.2360892
Kim, 2006, Effect of nanoparticles on CHF enhancement in pool boiling of nanofluids, Int. J. Heat Mass Transfer, 49, 5070, 10.1016/j.ijheatmasstransfer.2006.07.019
Kim, 2007, Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids, Appl. Phys. Lett., 91, 014104, 10.1063/1.2754644
Gennes, 2003
Bico, 2002, Wetting of textured surfaces, Colloid Surface A, 206, 41, 10.1016/S0927-7757(02)00061-4
Tak, 2005, Controlled growth of well-aligned ZnO nanorods array using a novel solution method, J. Phys. Chem. B, 109, 19263, 10.1021/jp0538767
N. Zuber, Hydrodynamic aspects of boiling heat transfer, Ph.D. thesis, University of California, Los Angeles, CA, 1959
R.W.L. Fong, T. Nithenandan, C.D. Bullock, L.F. Slater, G.A. McRae, Effect of oxidation and fractal surface roughness on the wettability and critical heat flux of glass-peened zirconium alloy tubes, in: Proceedings of the Fifth International Conference on Boiling Heat Transfer, 2003.
Kandlikar, 2001, A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation, J. Heat Transfer, 123, 1071, 10.1115/1.1409265
Liter, 2001, Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment, Int. J. Heat Mass Transfer, 44, 4287, 10.1016/S0017-9310(01)00084-9