Validation of a New Elastoplastic Constitutive Model Dedicated to the Cyclic Behaviour of Brittle Rock Materials
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alliche A (2004) Damage model for fatigue loading of concrete. Int J Fatigue 26(9):915–921. doi: 10.1016/j.ijfatigue.2004.02.006
Bastian T, Connelly B, Lazo Olivares C, Yfantidis N, Taheri A (2014) Progressive damage of Hawkesbury sandstone subjected to systematic cyclic loading. Min Educ Aust J Res Proj Rev 3:7–14
Benz T, Schwab R (2008) A quantitative comparison of six rock failure criteria. Int J Rock Mech Min Sci 45:1176–1186
Bieniawski Z (1967a) Mechanism of brittle fracture of rock: part I—theory of the fracture process. Int J Rock Mech Min Sci 4:395–406
Bieniawski Z (1967b) Mechanism of brittle fracture of rock: part II—experimental studies. Int J Rock Mech Min Sci 4:407–423
Brantut N, Heap M, Meredith P, Baud P (2013) Time-dependent cracking and brittle creep in crustal rocks: a review. J Struct Geol 52:17–43. doi: 10.1016/j.jsg.2013.03.007
Breccolotti M, Bonfigli M, D’Alessandro A, Materazzi A (2015) Constitutive modeling of plain concrete subjected to cyclic uniaxial compressive loading. Constr Build Mater 94:172–180. doi: 10.1016/j.conbuildmat.2015.06.067
Cerfontaine B, Collin F, Charlier R (2016) Numerical modelling of transient cyclic vertical loading of suction caissons in sand. Geotechnique 66(2):121–136. doi: 10.1680/jgeot.15.P.061
Chen H, Cong T, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19(3):291–312. doi: 10.1016/j.pnsc.2008.07.014
Chow TM, Meglis IL, Young RP (1995) Progressive microcrack development in tests on Lac du Bonnet granite—II. Ultrasonic tomographic imaging. Int J Rock Mech Min Sci Geomech Abstr 32(8):751–761. doi: 10.1016/0148-9062(95)00015-9
Dafalias Y (1986) Bounding surface plasticity. i: mathematical foundation and hypoplasticity. J Eng Mech 112(9):966–987
Dafalias Y, Manzari M (2004) Simple plasticity sand model accounting for fabric change effects. J Eng Mech 130(6):622–634
Dafalias Y, Papadimitriou A, Li X (2004) Sand plasticity model accounting for inherent fabric anisotropy. J Eng Mech 130(11):1319–1333
Dafalias Y, Taiebat M (2016) SANISAND-Z: zero elastic range sand plasticity model. Géotechnique 66(12):999–1013
Dal Pino R, Narducci P, Royer-Carfagni G (1999) A SEM investigation on fatigue damage of marble. J Mater Sci Lett 18:1619–1622
Eberhardt E, Stead D, Stimpson B (1999a) Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression. Int J Rock Mech Min Sci 36(3):361–380. doi: 10.1016/S0148-9062(99)00019-4
Eberhardt E, Stimpson B, Stead D (1999b) Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures. Rock Mech Rock Eng 32(2):81–99. doi: 10.1007/s006030050026
Erarslan N, Alehossein H, Williams DJ (2014) Tensile fracture strength of brisbane tuff by static and cyclic loading tests. Rock Mech Rock Eng 47(4):1135–1151. doi: 10.1007/s00603-013-0469-5
Erarslan N, Williams DJ (2012) Investigating the effect of cyclic loading on the indirect tensile strength of rocks. Rock Mech Rock Eng 45(3):327–340. doi: 10.1007/s00603-011-0209-7
Ferrero A, Migliazza M, Spagnoli A (2009) Theoretical modelling of bowing in cracked marble slabs under cyclic thermal loading. Constr Build Mater 23(6):2151–2159
Gatelier N, Pellet F, Loret B (2002) Mechanical damage of an anisotropic porous rock in cyclic triaxial tests. Int J Rock Mech Min Sci 39(3):335–354. doi: 10.1016/S1365-1609(02)00029-1
Ghamgosar M, Erarslan N (2015) Experimental and numerical studies on development of fracture process zone (FPZ) in rocks under cyclic and static loadings. Rock Mech Rock Eng 49(3):893–908. doi: 10.1007/s00603-015-0793-z
Haimson BC, Kim CM (1971) Mechanical behaviour of rock under cyclic fatigue. Rock Mech 3:845–863
Hajiabdolmajid V, Kaiser P (2002) Brittleness of rock and stability assessment in hard rock tunneling. Tunn Undergr Space Technol 18(1):35–48. doi: 10.1016/S0886-7798(02)00100-1
Hoek E, Brown E (1980) Underground excavations in rock. The Institution of Mining and Metallurgy, London
Hoek E, Brown E (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186. doi: 10.1016/S1365-1609(97)80069-X
Hueckel T (1991) Damping, cyclic strain buildup and fatigue of rocks a generalized Ramberg–Osgood approach. Comput Geotech 12(3):235–269
Khaledi K, Mahmoudi E, Datcheva M, Schanz T (2016) Stability and serviceability of underground energy storage caverns in rock salt subjected to mechanical cyclic loading. Int J Rock Mech Min Sci 86:115–131. doi: 10.1016/j.ijrmms.2016.04.010
Khaledi K, Mahmoudi E, Datcheva M, Schanz T (2016) Stability and serviceability of underground energy storage caverns in rock salt subjected to mechanical cyclic loading. Int J Rock Mech Min Sci 86(15):115–131. doi: 10.1016/j.ijrmms.2016.04.010
Li N, Zhang P, Chen Y, Swoboda G (2003) Fatigue properties of cracked, saturated and frozen sandstone samples under cyclic loading. Int J Rock Mech Min Sci 40(1):145–150. doi: 10.1016/S1365-1609(02)00111-9
Li X, Dafalias Y (2012) Anisotropic critical state theory: role of fabric. J Eng Mech 138(3):263–275
Liu E, He S (2012) Effects of cyclic dynamic loading on the mechanical properties of intact rock samples under confining pressure conditions. Eng Geol 125:81–91. doi: 10.1016/j.enggeo.2011.11.007
Liu J, Xie H, Hou Z, Yang C, Chen L (2014) Damage evolution of rock salt under cyclic loading in unixial tests. Acta Geotech 9(1):153–160. doi: 10.1007/s11440-013-0236-5
Mahmoudi E, Khaledi K, Miro S, König D, Schanz T (2016) Probabilistic analysis of a rock salt cavern with application to energy storage systems. Rock Mech Rock Eng. doi: 10.1007/s00603-016-1105-y
Manzari M, Dafalias Y (1997) A critical state two-surface plasticity model for sands. Geotechnique 47(2):255–272
Martin C, Chandler N (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstr 31(6):643–659
Martin CD (1997) Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength. Can Geotech J 34(5):698–725
Mazars J, Hamon F, Grange S (2015) A new 3D damage model for concrete under monotonic, cyclic and dynamic loadings. Mater Struct. doi: 10.1617/s11527-014-0439-8
Mira P, Tonni L, Pastor M, Fernandez-Merodo J (2009) A generalized midpoint algorithm for the integration of a generalized plasticity model for sands. Int J Numer Method Geomech 77:1201–1223. doi: 10.1002/nme
Papamichos E, Papanicolopulos S, Larsen I, Alnæs L, Rescic S (2004) Method for in situ, quasi non-destructive diagnosis of mechanical properties and damage of natural building stones. In Gulf Rocks 2004, the 6th North America Rock Mechanics Symposium (NARMS), American Rock Mechanics Association
Peng X, Meyer C (2000) A continuum damage mechanics model for concrete reinforced with randomly distributed short fibers. Comput Struct 78(4):505–515. doi: 10.1016/S0045-7949(00)00045-6
Pouya A, Zhu C, Arson C (2016) Micro-macro approach of salt viscous fatigue under cyclic loading. Mech Mater 93:13–31. doi: 10.1016/j.mechmat.2015.10.009
Prevost J-H (1985) A simple plasticity theory for frictional cohesionless soils. Soil Dyn Earthq Eng 4(1):9–17
Prost G (1988) Jointing at rock contacts in cyclic loading. Int J Rock Mech Min Sci Geomech Abstr 25(5):263–272. doi: 10.1016/0148-9062(88)90003-4
Pujades E, Willems T, Bodeux S, Orban P, Dassargues A (2016) Underground pumped storage hydroelectricity using abandoned works (deep mines or open pits) and the impact on groundwater flow. Hydrogeol J 24(6):1531–1546. doi: 10.1007/s10040-016-1413-z
Raju M, Kumar Khaitan S (2012) Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf plant. Appl Energy 89(1):474–481. doi: 10.1016/j.apenergy.2011.08.019
Royer-Carfagni G, Salvatore W (2000) The characterization of marble by cyclic compression loading: experimental results. Mech Cohesive Frict Mater 5(7):535–563
Simo J, Hughes T (1998) Computational inelasticity. Springer-Verlag, NewYork
Sloan SW, Abbo AJ, Sheng D (2001) Refined explicit integration of elastoplastic models with automatic error control. Eng Comput 18(1/2):121–194. doi: 10.1108/02644400110365842
Stavropoulou M, Liolios P, Exadaktylos G (2004) Calibration of the triaxial hyperbolic Mohr–Coulomb elastoplastic model parameters on laboratory rock mechanics tests. Int J Geomech 12:618–631
Suaris W, Ouyang C, Fernando V (1990) Damage model for cyclic loading of concrete. J Eng Mech 116(5):1020–1035
Taheri A, Royle A, Yang Z, Zhao Y (2016) Study on variations of peak strength of a sandstone during cyclic loading. Geomech Geophy Geo-Energy Geo-Resour 2(1):1–10. doi: 10.1007/s40948-015-0017-8
Taiebat M, Dafalias Y (2008) SANISAND: simple anisotropic sand plasticity model. Int J Numer Anal Methods Geomech 32:915–948
Taiebat M, Dafalias Y (2010) Simple yield surface expressions appropriate for soil plasticity. Int J Geomech 10(4):161–169
Wang Z, Li S, Qiao L, Zhang Q (2015) Finite element analysis of the hydro-mechanical behavior of an underground crude oil storage facility in granite subject to cyclic loading during operation. Int J Rock Mech Min Sci 73:70–81. doi: 10.1016/j.ijrmms.2014.09.018
Wang Z, Li S, Qiao L, Zhao J (2013) Fatigue behavior of granite subjected to cyclic loading under triaxial compression condition. Rock Mech Rock Eng 46(6):1603–1615. doi: 10.1007/s00603-013-0387-6
Wu J, Li J, Faria R (2006) An energy release rate-based plastic-damage model for concrete. Int J Solids and Struct 43(3–4):583–612. doi: 10.1016/j.ijsolstr.2005.05.038
Xiao J, Ding D, Jiang F, Xu G (2010) Fatigue damage variable and evolution of rock subjected to cyclic loading. Int J Rock Mech Min Sci 47(3):461–468. doi: 10.1016/j.ijrmms.2009.11.003