Validation of a New Elastoplastic Constitutive Model Dedicated to the Cyclic Behaviour of Brittle Rock Materials

Benjamin Cerfontaine1, Robert Charlier1, Frédéric Collin1, Mahdi Taiebat2
1Urban and Environmental Engineering, University of Liege, Allee de la Decouverte, 9, 4000, Liege, Belgium
2Department of Civil Engineering, University of British Columbia, Vancouver, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alliche A (2004) Damage model for fatigue loading of concrete. Int J Fatigue 26(9):915–921. doi: 10.1016/j.ijfatigue.2004.02.006

Attewell P, Farmer W (1973) Fatigue behaviour of rock. Int J Rock Mech Min Sci 10:1–9

Bastian T, Connelly B, Lazo Olivares C, Yfantidis N, Taheri A (2014) Progressive damage of Hawkesbury sandstone subjected to systematic cyclic loading. Min Educ Aust J Res Proj Rev 3:7–14

Benz T, Schwab R (2008) A quantitative comparison of six rock failure criteria. Int J Rock Mech Min Sci 45:1176–1186

Bieniawski Z (1967a) Mechanism of brittle fracture of rock: part I—theory of the fracture process. Int J Rock Mech Min Sci 4:395–406

Bieniawski Z (1967b) Mechanism of brittle fracture of rock: part II—experimental studies. Int J Rock Mech Min Sci 4:407–423

Brantut N, Heap M, Meredith P, Baud P (2013) Time-dependent cracking and brittle creep in crustal rocks: a review. J Struct Geol 52:17–43. doi: 10.1016/j.jsg.2013.03.007

Breccolotti M, Bonfigli M, D’Alessandro A, Materazzi A (2015) Constitutive modeling of plain concrete subjected to cyclic uniaxial compressive loading. Constr Build Mater 94:172–180. doi: 10.1016/j.conbuildmat.2015.06.067

Burdine N (1963) Rock failure under dynamic loading conditions. Soc Pet Eng J 3(01):1–8

Cattaneo S, Labuz J (2001) Damage of marble from cyclic loading. J Mater Civ Eng 13:459–465

Cerfontaine B, Collin F, Charlier R (2016) Numerical modelling of transient cyclic vertical loading of suction caissons in sand. Geotechnique 66(2):121–136. doi: 10.1680/jgeot.15.P.061

Chen H, Cong T, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19(3):291–312. doi: 10.1016/j.pnsc.2008.07.014

Chow TM, Meglis IL, Young RP (1995) Progressive microcrack development in tests on Lac du Bonnet granite—II. Ultrasonic tomographic imaging. Int J Rock Mech Min Sci Geomech Abstr 32(8):751–761. doi: 10.1016/0148-9062(95)00015-9

Dafalias Y (1986) Bounding surface plasticity. i: mathematical foundation and hypoplasticity. J Eng Mech 112(9):966–987

Dafalias Y, Manzari M (2004) Simple plasticity sand model accounting for fabric change effects. J Eng Mech 130(6):622–634

Dafalias Y, Papadimitriou A, Li X (2004) Sand plasticity model accounting for inherent fabric anisotropy. J Eng Mech 130(11):1319–1333

Dafalias Y, Taiebat M (2016) SANISAND-Z: zero elastic range sand plasticity model. Géotechnique 66(12):999–1013

Dal Pino R, Narducci P, Royer-Carfagni G (1999) A SEM investigation on fatigue damage of marble. J Mater Sci Lett 18:1619–1622

Eberhardt E, Stead D, Stimpson B (1999a) Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression. Int J Rock Mech Min Sci 36(3):361–380. doi: 10.1016/S0148-9062(99)00019-4

Eberhardt E, Stimpson B, Stead D (1999b) Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures. Rock Mech Rock Eng 32(2):81–99. doi: 10.1007/s006030050026

Erarslan N, Alehossein H, Williams DJ (2014) Tensile fracture strength of brisbane tuff by static and cyclic loading tests. Rock Mech Rock Eng 47(4):1135–1151. doi: 10.1007/s00603-013-0469-5

Erarslan N, Williams DJ (2012) Investigating the effect of cyclic loading on the indirect tensile strength of rocks. Rock Mech Rock Eng 45(3):327–340. doi: 10.1007/s00603-011-0209-7

Ferrero A, Migliazza M, Spagnoli A (2009) Theoretical modelling of bowing in cracked marble slabs under cyclic thermal loading. Constr Build Mater 23(6):2151–2159

Førsund R (2007) Hydropower economics, vol 112. Springer, New York

Gatelier N, Pellet F, Loret B (2002) Mechanical damage of an anisotropic porous rock in cyclic triaxial tests. Int J Rock Mech Min Sci 39(3):335–354. doi: 10.1016/S1365-1609(02)00029-1

Ghamgosar M, Erarslan N (2015) Experimental and numerical studies on development of fracture process zone (FPZ) in rocks under cyclic and static loadings. Rock Mech Rock Eng 49(3):893–908. doi: 10.1007/s00603-015-0793-z

Haimson BC, Kim CM (1971) Mechanical behaviour of rock under cyclic fatigue. Rock Mech 3:845–863

Hajiabdolmajid V, Kaiser P (2002) Brittleness of rock and stability assessment in hard rock tunneling. Tunn Undergr Space Technol 18(1):35–48. doi: 10.1016/S0886-7798(02)00100-1

Hashiguchi K (2009) Elastoplasticity theory. Springer-Verlag, NewYork

Hoek E, Brown E (1980) Underground excavations in rock. The Institution of Mining and Metallurgy, London

Hoek E, Brown E (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186. doi: 10.1016/S1365-1609(97)80069-X

Hueckel T (1991) Damping, cyclic strain buildup and fatigue of rocks a generalized Ramberg–Osgood approach. Comput Geotech 12(3):235–269

Khaledi K, Mahmoudi E, Datcheva M, Schanz T (2016) Stability and serviceability of underground energy storage caverns in rock salt subjected to mechanical cyclic loading. Int J Rock Mech Min Sci 86:115–131. doi: 10.1016/j.ijrmms.2016.04.010

Khaledi K, Mahmoudi E, Datcheva M, Schanz T (2016) Stability and serviceability of underground energy storage caverns in rock salt subjected to mechanical cyclic loading. Int J Rock Mech Min Sci 86(15):115–131. doi: 10.1016/j.ijrmms.2016.04.010

Li N, Zhang P, Chen Y, Swoboda G (2003) Fatigue properties of cracked, saturated and frozen sandstone samples under cyclic loading. Int J Rock Mech Min Sci 40(1):145–150. doi: 10.1016/S1365-1609(02)00111-9

Li X, Dafalias Y (2012) Anisotropic critical state theory: role of fabric. J Eng Mech 138(3):263–275

Liu E, He S (2012) Effects of cyclic dynamic loading on the mechanical properties of intact rock samples under confining pressure conditions. Eng Geol 125:81–91. doi: 10.1016/j.enggeo.2011.11.007

Liu J, Xie H, Hou Z, Yang C, Chen L (2014) Damage evolution of rock salt under cyclic loading in unixial tests. Acta Geotech 9(1):153–160. doi: 10.1007/s11440-013-0236-5

Mahmoudi E, Khaledi K, Miro S, König D, Schanz T (2016) Probabilistic analysis of a rock salt cavern with application to energy storage systems. Rock Mech Rock Eng. doi: 10.1007/s00603-016-1105-y

Manzari M, Dafalias Y (1997) A critical state two-surface plasticity model for sands. Geotechnique 47(2):255–272

Martin C, Chandler N (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstr 31(6):643–659

Martin CD (1997) Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength. Can Geotech J 34(5):698–725

Mazars J, Hamon F, Grange S (2015) A new 3D damage model for concrete under monotonic, cyclic and dynamic loadings. Mater Struct. doi: 10.1617/s11527-014-0439-8

Mira P, Tonni L, Pastor M, Fernandez-Merodo J (2009) A generalized midpoint algorithm for the integration of a generalized plasticity model for sands. Int J Numer Method Geomech 77:1201–1223. doi: 10.1002/nme

Papamichos E, Papanicolopulos S, Larsen I, Alnæs L, Rescic S (2004) Method for in situ, quasi non-destructive diagnosis of mechanical properties and damage of natural building stones. In Gulf Rocks 2004, the 6th North America Rock Mechanics Symposium (NARMS), American Rock Mechanics Association

Peng X, Meyer C (2000) A continuum damage mechanics model for concrete reinforced with randomly distributed short fibers. Comput Struct 78(4):505–515. doi: 10.1016/S0045-7949(00)00045-6

Pouya A, Zhu C, Arson C (2016) Micro-macro approach of salt viscous fatigue under cyclic loading. Mech Mater 93:13–31. doi: 10.1016/j.mechmat.2015.10.009

Prevost J-H (1985) A simple plasticity theory for frictional cohesionless soils. Soil Dyn Earthq Eng 4(1):9–17

Prost G (1988) Jointing at rock contacts in cyclic loading. Int J Rock Mech Min Sci Geomech Abstr 25(5):263–272. doi: 10.1016/0148-9062(88)90003-4

Pujades E, Willems T, Bodeux S, Orban P, Dassargues A (2016) Underground pumped storage hydroelectricity using abandoned works (deep mines or open pits) and the impact on groundwater flow. Hydrogeol J 24(6):1531–1546. doi: 10.1007/s10040-016-1413-z

Raju M, Kumar Khaitan S (2012) Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf plant. Appl Energy 89(1):474–481. doi: 10.1016/j.apenergy.2011.08.019

Royer-Carfagni G, Salvatore W (2000) The characterization of marble by cyclic compression loading: experimental results. Mech Cohesive Frict Mater 5(7):535–563

Simo J, Hughes T (1998) Computational inelasticity. Springer-Verlag, NewYork

Sloan SW, Abbo AJ, Sheng D (2001) Refined explicit integration of elastoplastic models with automatic error control. Eng Comput 18(1/2):121–194. doi: 10.1108/02644400110365842

Stavropoulou M, Liolios P, Exadaktylos G (2004) Calibration of the triaxial hyperbolic Mohr–Coulomb elastoplastic model parameters on laboratory rock mechanics tests. Int J Geomech 12:618–631

Steffen B (2012) Prospects for pumped-hydro storage in Germany. Energy Policy 45:420–429

Suaris W, Ouyang C, Fernando V (1990) Damage model for cyclic loading of concrete. J Eng Mech 116(5):1020–1035

Taheri A, Royle A, Yang Z, Zhao Y (2016) Study on variations of peak strength of a sandstone during cyclic loading. Geomech Geophy Geo-Energy Geo-Resour 2(1):1–10. doi: 10.1007/s40948-015-0017-8

Taiebat M, Dafalias Y (2008) SANISAND: simple anisotropic sand plasticity model. Int J Numer Anal Methods Geomech 32:915–948

Taiebat M, Dafalias Y (2010) Simple yield surface expressions appropriate for soil plasticity. Int J Geomech 10(4):161–169

Wang Z, Li S, Qiao L, Zhang Q (2015) Finite element analysis of the hydro-mechanical behavior of an underground crude oil storage facility in granite subject to cyclic loading during operation. Int J Rock Mech Min Sci 73:70–81. doi: 10.1016/j.ijrmms.2014.09.018

Wang Z, Li S, Qiao L, Zhao J (2013) Fatigue behavior of granite subjected to cyclic loading under triaxial compression condition. Rock Mech Rock Eng 46(6):1603–1615. doi: 10.1007/s00603-013-0387-6

Wu J, Li J, Faria R (2006) An energy release rate-based plastic-damage model for concrete. Int J Solids and Struct 43(3–4):583–612. doi: 10.1016/j.ijsolstr.2005.05.038

Xiao J, Ding D, Jiang F, Xu G (2010) Fatigue damage variable and evolution of rock subjected to cyclic loading. Int J Rock Mech Min Sci 47(3):461–468. doi: 10.1016/j.ijrmms.2009.11.003

Xiao J, Ding D, Xu G, Jiang F (2009) Inverted S-shaped model for nonlinear fatigue damage of rock. Int J Rock Mech Min Sci 46(3):643–648. doi: 10.1016/j.ijrmms.2008.11.002