The contribution of zinc ions to the antimicrobial activity of zinc oxide

Julia Pasquet1,2, Yves Chevalier2, Jocelyne Pelletier2, Emmanuelle Couval1, Dominique Bouvier1, Marie-Alexandrine Bolzinger2
1Strand Cosmetics Europe, 124 route du Charpenay, 69210 Lentilly, France
2Université Claude Bernard Lyon 1, Laboratoire d’Automatique et de Génie des Procédés (LAGEP), CNRS UMR 5007, 43 bd 11 Novembre, 69622 Villeurbanne, France

Tài liệu tham khảo

Applerot, 2009, Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury, Adv. Funct. Mater., 19, 842, 10.1002/adfm.200801081 Sawai, 1998, Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry, J. Ferment. Bioeng., 86, 521, 10.1016/S0922-338X(98)80165-7 Lipovsky, 2011, Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury, Nanotechnology, 22, 105101, 10.1088/0957-4484/22/10/105101 Brayner, 2006, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, Nano Lett., 6, 866, 10.1021/nl052326h Zhang, 2008, ZnO nanofluids—a potential antibacterial agent, Prog. Nat. Sci., 18, 939, 10.1016/j.pnsc.2008.01.026 Jiang, 2009, Bacterial toxicity comparison between nano- and micro-scaled oxide particles, Environ. Pollut., 157, 1619, 10.1016/j.envpol.2008.12.025 Brunner, 2006, In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility, Environ. Sci. Technol., 40, 4374, 10.1021/es052069i Fang, 2010, Stresses exerted by ZnO, CeO2 and anatase TiO2 nanoparticles on the Nitrosomonas europaea, J. Colloid Interface Sci., 348, 329, 10.1016/j.jcis.2010.04.075 Li, 2011, Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components, Environ. Sci. Technol., 45, 1977, 10.1021/es102624t Leung, 2012, Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination, Nanotechnology, 23, 475703, 10.1088/0957-4484/23/47/475703 Cunnane, 1988 Haase, 2008, Zinc supplementation for the treatment or prevention of disease: current status and future perspectives, Exp. Gerontol., 43, 394, 10.1016/j.exger.2007.12.002 Bertini, 1994, The reaction pathways of zinc enzymes and related biological catalysts, 37 Vallee, 1993, The biochemical basis of zinc physiology, Physiol. Rev., 73, 79, 10.1152/physrev.1993.73.1.79 Palmiter, 1995, Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc, EMBO J., 14, 639, 10.1002/j.1460-2075.1995.tb07042.x Gaballa, 1998, Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis, J. Bacteriol., 180, 5815, 10.1128/JB.180.22.5815-5821.1998 Eide, 1997, Molecular biology of iron and zinc uptake in eukaryotes, Curr. Opin. Cell Biol., 9, 573, 10.1016/S0955-0674(97)80036-1 Sugarman, 1983, Zinc and infection, Rev. Infect. Dis., 5, 137, 10.1093/clinids/5.1.137 Borovanský, 1989, Cytotoxicity of zinc in vitro, Chem. Biol. Interact., 69, 279, 10.1016/0009-2797(89)90085-9 Atmaca, 1998, The effect of zinc on microbial growth, Turk. J. Med. Sci., 28, 595 Padmavathy, 2008, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study, Sci. Technol. Adv. Mater., 9, 035004, 10.1088/1468-6996/9/3/035004 Zhang, 2010, Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli, J. Nanopart. Res., 12, 1625, 10.1007/s11051-009-9711-1 Miller, 1957, Toxic action of metal Ions to fungus spores, J. Agric. Food Chem., 5, 116, 10.1021/jf60072a003 Stanić, 2010, Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders, Appl. Surf. Sci., 256, 6083, 10.1016/j.apsusc.2010.03.124 Fang, 2006, Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests, Int. J. Antimicrob. Agents, 27, 513, 10.1016/j.ijantimicag.2006.01.008 Jones, 2008, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms, FEMS Microbiol. Lett., 279, 71, 10.1111/j.1574-6968.2007.01012.x Reddy, 2007, Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems, Appl. Phys. Lett., 90, 213902-1, 10.1063/1.2742324 Sawai, 2003, Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay, J. Microbiol. Methods, 54, 177, 10.1016/S0167-7012(03)00037-X Xia, 2008, Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties, ACS Nano, 2, 2121, 10.1021/nn800511k Boyd, 2006, The antibacterial effects of zinc ion migration from zinc-based glass polyalkenoate cements, J. Mater. Sci: Mater. Med., 17, 489 Gu, 2011, Effect of ZnCl2 on plaque growth and biofilm vitality, Arch. Oral Biol., 57, 369, 10.1016/j.archoralbio.2011.10.001 Han, 2010, Potential dissolution and photo-dissolution of ZnO thin films, J. Hazard. Mater., 178, 115, 10.1016/j.jhazmat.2010.01.050 Yang, 2006, Zn2+ release from zinc and zinc oxide particles in simulated uterine solution, Colloids Surf., B: Biointerfaces, 47, 140, 10.1016/j.colsurfb.2005.12.007 Franklin, 2007, Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriellasubcapitata): the importance of particle solubility, Environ. Sci. Technol., 41, 8484, 10.1021/es071445r Peng, 2011, Effect of morphology of ZnO nanostructures on their toxicity to marine algae, Aquat. Toxicol., 102, 186, 10.1016/j.aquatox.2011.01.014 Wong, 2010, Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility, Anal. Bioanal. Chem., 396, 609, 10.1007/s00216-009-3249-z Martorano, 2010, UV irradiation-induced zinc dissociation from commercial zinc oxide sunscreen and its action in human epidermal keratinocytes, J. Cosmet. Dermatol., 9, 276, 10.1111/j.1473-2165.2010.00521.x Qing, 1996, Effects of pH and metal ions on the conformation of bovine serum albumin in aqueous solution. An attenuated total reflection (ATR) FTIR spectroscopic study, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 52, 1795, 10.1016/S0584-8539(96)01726-6 Fasim, 2002, Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery, FEMS Microbiol. Lett., 213, 1, 10.1111/j.1574-6968.2002.tb11277.x Franz, 1991, Leaching with Penicillium simplicissimum: influence of metals and buffers on proton extrusion and citric acid production, Appl. Environ. Microbiol., 57, 769, 10.1128/AEM.57.3.769-774.1991 Li, 2010, Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii, Plant Soil, 326, 453, 10.1007/s11104-009-0025-y Li, 2011, Toxicity of zinc oxide nanoparticles in the earthworm, Eiseniafetida and subcellular fractionation of Zn, Environ. Int., 37, 1098, 10.1016/j.envint.2011.01.008 Yamaki, 2009, Comparison of inhibitory activities of zinc oxide ultrafine and fine particulates on IgE-induced mast cell activation, Biometals, 22, 1031, 10.1007/s10534-009-9254-z Yebra, 2006, Dissolution rate measurements of sea water soluble pigments for antifouling paints: ZnO, Prog. Org. Coat., 56, 327, 10.1016/j.porgcoat.2006.06.007 Bai, 2010, Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism, J. Nanopart. Res., 12, 1645, 10.1007/s11051-009-9740-9 Pasquet, 2014, Antimicrobial activity of zinc oxide particles on five micro-organisms of the Challenge Tests related to their physicochemical properties, Int. J. Pharm., 460, 92, 10.1016/j.ijpharm.2013.10.031 Cardellicchio, 1999, New strategies for determination of transition metals by complexation ion-exchange chromatography and post column reaction, J. Chromatogr. A, 847, 251, 10.1016/S0021-9673(99)00426-4 Atanassova, 2004, A high-performance liquid chromatography method for determining transition metal content in proteins, Anal. Biochem., 335, 103, 10.1016/j.ab.2004.08.013 Song, 2011, Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport, Biomed. Opt. Express, 2, 3321, 10.1364/BOE.2.003321 Reichle, 1975, Zinc hydroxide: solubility product and hydroxy-complex stability constants from 12.5–75°C, Can. J. Chem., 53, 3841, 10.1139/v75-556 Yin, 2010, Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles, Langmuir, 26, 15399, 10.1021/la101033n Tantra, 2010, Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension, Colloids Surf., B: Biointerfaces, 75, 275, 10.1016/j.colsurfb.2009.08.049 Chowdhury, 2010, Container to characterization: impacts of metal oxide handling, preparation, and solution chemistry on particle stability, Colloids Surf., A: Physicochem. Eng. Aspects, 368, 91, 10.1016/j.colsurfa.2010.07.019 Bian, 2011, Aggregation and dissolution of 4nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid, Langmuir, 27, 6059, 10.1021/la200570n Pizzey, 2011, Antimicrobial effects of o-cymen-5-ol and zinc, alone & in combination in simple solutions and toothpaste formulations, Int. Dent. J., 61, 33, 10.1111/j.1875-595X.2011.00047.x