Anhydrous ringwoodites in the mantle transition zone: Their bulk modulus, solid solution behavior, compositional variation, and sound velocity feature
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akaogi, 1989, Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: calorimetric measurements, thermochemical calculation, and geophysical application, J. Geophys. Res., 94, 15671, 10.1029/JB094iB11p15671
Akimoto, 1965, The olivine-spinel transition in Fe2SiO4 and Ni2SiO4, J. Geophys. Res., 70, 1969, 10.1029/JZ070i008p01969
Akimoto, 1967, High-pressure decomposition for some titanate spinels, J. Chem. Phys., 47, 1813, 10.1063/1.1712170
Akimoto, 1968, Olivine-spinel solid solution equilibria in the system Mg2SiO4-Fe2SiO4, J. Geophys. Res., 73, 1467, 10.1029/JB073i004p01467
Akimoto, 1968, High-pressure transformation in Co2SiO4 olivine and some geophysical implications, Phys. Earth Planet. Inter., 1, 498, 10.1016/0031-9201(68)90018-6
Akimoto, 1972, The system MgO-FeO-SiO2 at high pressures and temperatures-phase equilibria and elastic properties, Tectonophysics, 13, 161, 10.1016/0040-1951(72)90019-4
Anderson, 1970, The bulk modulus-volume relationship for oxides, J. Geophys. Res., 75, 3494, 10.1029/JB075i017p03494
Antao, 2005, Effects of high pressure and high temperature on cation ordering in magnesioferrite, MgFe2O4, using in situ synchrotron X-ray powder diffraction up to 1430 K and 6 GPa, Am. Mineral., 90, 1500, 10.2138/am.2005.1797
Armentrout, 2011, High pressure, high temperature equation of state for Fe2SiO4 ringwoodite and implications for the Earth's transition zone, Geophys. Res. Lett., 38, L08309, 10.1029/2011GL046949
Bartram, 1961, Compound formation and crystal structure in the system ZnO-TiO2, J. Am. Ceram. Soc., 44, 493, 10.1111/j.1151-2916.1961.tb13712.x
Bass, 1984, Elasticity of the olivine and spinel polymorphs of Ni2SiO4, Phys. Chem. Mineral., 10, 261, 10.1007/BF00311951
Bolfan-Casanova, 2000, Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: implications for the distribution of water in the Earth's mantle, Earth Planet. Sci. Lett., 182, 209, 10.1016/S0012-821X(00)00244-2
Cammarano, 2007, Insights into the nature of the transition zone from physically constrained inversion of long-period seismic data, Proc. Natl. Acad. Sci. U. S. A., 104, 9139, 10.1073/pnas.0608075104
Chang, 2013, Expansivity and compressibility of wadeite-type K2Si4O9 determined by in situ high T/P experiments, and their implication, Phys. Chem. Mineral., 40, 29, 10.1007/s00269-012-0543-7
Chopelas, 1991, Vibrational spectroscopy of aluminate spinels at 1 atm and of MgAl2O4 to over 200 kbar, Phys. Chem. Mineral., 18, 279, 10.1007/BF00200186
Cobden, 2008, Thermochemical interpretation of one-dimensional seismic reference models for the upper mantle: evidence for bias due to heterogeneity, Geophys. J. Int., 175, 627, 10.1111/j.1365-246X.2008.03903.x
Dachille, 1960, High pressure studies of the system Mg2GeO4-Mg2SiO4 with special reference to the olivine-spinel transition, Am. J. Sci., 258, 225, 10.2475/ajs.258.4.225
Datta, 1967, Equilibrium order-disorder in spinels, J. Am. Ceram. Soc., 50, 578, 10.1111/j.1151-2916.1967.tb15002.x
Demouchy, 2005, Pressure and temperature-dependence of water solubility in Fe-free wadsleyite, Am. Mineral., 90, 1084, 10.2138/am.2005.1751
Ding, 1990, X-ray powder structural analysis of the spinel polymorph of Fe2SiO4, Powder Diffr., 5, 221, 10.1017/S0885715600015852
Dube, 1991, X-ray, electrical and catalytic studies of the system CoFe2O4-Co2TiO4, Bull. Chem. Soc. Jpn., 64, 2449, 10.1246/bcsj.64.2449
Duffy, 1989, Seismic velocities in mantle minerals and the mineralogy of the upper mantle, J. Geophys. Res., 94, 1895, 10.1029/JB094iB02p01895
Dziewonski, 1981, Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297, 10.1016/0031-9201(81)90046-7
Fei, 1991, Experimental determination of element partitioning and calculation of phase relations in the MgO-FeO-SiO2 system at high pressure and high temperature, J. Geophys. Res., 96, 2157, 10.1029/90JB02164
Fei, 2004, Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications, J. Geophys. Res., 109, B02305, 10.1029/2003JB002562
Finger, 1979, Crystal structures and electron densities of nickel and iron silicate spinels at elevated temperature or pressure, Am. Mineral., 64, 1002
Finger, 1986, High-pressure crystal chemistry of spinel (MgAl2O4) and magnetite (Fe3O4): comparisons with silicate spinels, Phys. Chem. Mineral., 13, 215, 10.1007/BF00308271
Forster, 1965, A neutron and x-ray diffraction study of ulvospinel, Fe2TiO4, Acta Crystallogr., 18, 859, 10.1107/S0365110X65002104
Frost, 2003, Fe2+-Mg partitioning between garnet, magnesiowüstite, and (Mg,Fe)2SiO4 phases of the transition zone, Am. Mineral., 88, 387, 10.2138/am-2003-2-315
Frost, 2003, The structure and sharpness of (Mg,Fe)2SiO4 phase transformations in the transition zone, Earth Planet. Sci. Lett., 216, 313, 10.1016/S0012-821X(03)00533-8
Fukao, 2001, Stagnant slabs in the upper and lower mantle transition region, Rev. Geophys., 39, 291, 10.1029/1999RG000068
Furuhashi, 1973, Cation distribution in the solid solutions of the CoAl2O4-GeCo2O4 system, J. Inorg. Nucl. Chem., 35, 3707, 10.1016/0022-1902(73)80059-4
Furuhashi, 1973, Determination of cation distribution in spinels by X-ray diffraction method, J. Inorg. Nucl. Chem., 35, 3009, 10.1016/0022-1902(73)80531-7
Gatta, 2014, Static positional disorder in ulvöspinel: a single-crystal neutron diffraction study, Am. Mineral., 99, 255, 10.2138/am.2014.4702
Gössler, 1996, Seismic evidence for very deep roots of continents, Earth Planet. Sci. Lett., 138, 1, 10.1016/0012-821X(95)00215-X
Green, 2010, Seismic evidence of negligible water carried below 410-km depth in subducting lithosphere, Nature, 467, 828, 10.1038/nature09401
Hariya, 1970, The stability and phase transition of the system Fe2GeO4-Fe2SiO4, J. Fac. Sci. Hokkaido Univ., 4, 355
Hazen, 1993, Comparative compressibilities of silicate spinels: anomalous behavior of (Mg,Fe)2SiO4, Science, 259, 206, 10.1126/science.259.5092.206
Hazen, 1993, Crystal chemistry of ferromagnesian silicate spinels: evidence for Mg-Si disorder, Am. Mineral., 78, 1320
Hazen, 1999, Effects of cation substitution and order-disorder on P-V-T equations of state of cubic spinels, Am. Mineral., 84, 1956, 10.2138/am-1999-11-1224
Helffrich, 2000, Topography of the transition zone seismic discontinuities, Rev. Geophys., 38, 141, 10.1029/1999RG000060
He, 2012, Solid solutions between lead fluorapatite and lead fluorvanadate apatite: compressibility determined by using a diamond-anvil cell coupled with synchrotron X-ray diffraction, Phys. Chem. Mineral., 39, 219, 10.1007/s00269-011-0477-5
He, 2013, Expansivity and compressibility of strontium and barium fluorapatite determined by in situ X-ray diffraction at high-T/P conditions: significance of the M-site cations, Phys. Chem. Mineral., 40, 349, 10.1007/s00269-013-0576-6
Higo, 2006, The effect of iron on the elastic properties of ringwoodite at high pressure, Phys. Earth Planet. Inter., 159, 276, 10.1016/j.pepi.2006.08.004
Higo, 2008, Elastic wave velocities of (Mg0.91Fe0.09)2SiO4 ringwoodite under P-T conditions of the mantle transition region, Phys. Earth Planet. Inter., 166, 167, 10.1016/j.pepi.2008.01.003
Hirose, 2002, Phase transitions in pyrolitic mantle around 670-km depth: implications for upwelling of plumes from the lower mantle, J. Geophys. Res., 107, 2078, 10.1029/2001JB000597
Hofmeister, 2001, Evaluation of shear moduli and other properties of silicates with the spinel structure from IR spectroscopy, Am. Mineral., 86, 622, 10.2138/am-2001-5-604
Holtzclaw, 1988
Hutchison, 2001, Mineral inclusions in diamonds: associations and chemical distinctions around the 670-km discontinuity, Contrib. Mineral. Petrol., 142, 119, 10.1007/s004100100279
Inagaki, 1977, Solid solubility and cation distribution in the system Co2GeO4-Mg2GeO4, J. Solid State Chem., 20, 169, 10.1016/0022-4596(77)90064-0
Inoue, 1998, Elastic properties of hydrous ringwoodite (γ-phase) in Mg2SiO4, Earth Planet. Sci. Lett., 160, 107, 10.1016/S0012-821X(98)00077-6
Irifune, 1987, Phase transformation in primitive MORB and pyrolite compositions to 25 GPa and some geophysical implications, 221
Irifune, 1994, Absence of an aluminous phase in the upper part of the Earth's lower mantle, Nature, 370, 131, 10.1038/370131a0
Irifune, 1998, Iron partitioning in a pyrolite mantle and the nature of the 410-km seismic discontinuity, Nature, 392, 702, 10.1038/33663
Irifune, 2008, Sound velocities of majorite garnet and the composition of the mantle transition region, Nature, 451, 814, 10.1038/nature06551
Ita, 1992, Petrology, elasticity and composition of the mantle transition zone, J. Geophys. Res., 97, 6849, 10.1029/92JB00068
Ito, 1975, High-pressure decompositions in cobalt and nickel silicates, Phys. Earth Planet. Inter., 10, 88, 10.1016/0031-9201(75)90022-9
Ito, 1979, High-pressure transformations in silicates, germanates, and titanates with ABO3 stoichiometry, Phys. Chem. Mineral., 4, 265, 10.1007/BF00307950
Ito, 1989, A temperature profile of the mantle transition zone, Geophys. Res. Lett., 16, 425, 10.1029/GL016i005p00425
Jackson, 1998, Elasticity, composition and temperature of the Earth's lower mantle: a reappraisal, Geophys. J. Int., 134, 291, 10.1046/j.1365-246x.1998.00560.x
Jackson, 1998, Composition and temperature of the Earth's mantle: seismological models interpreted through experimental studies of Earth materials, 405
Jackson, 2000, Sound velocities and elastic properties of γ-Mg2SiO4 to 873 K by Brillouin spectroscopy, Am. Mineral., 85, 296, 10.2138/am-2000-2-306
Katsura, 1989, The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel, J. Geophys. Res., 94, 15663, 10.1029/JB094iB11p15663
Katsura, 2004, Thermal expansion of Mg2SiO4 ringwoodite at high pressures, J. Geophys. Res., 109, B12209, 10.1029/2004JB003094
Kelbert, 2009, Global electromagnetic induction constraints on transition-zone water content variations, Nature, 460, 1003, 10.1038/nature08257
Kennett, 1995, Constraints on seismic velocities in the Earth from travel times, Geophys. J. Int., 122, 108, 10.1111/j.1365-246X.1995.tb03540.x
Kiefer, 1997, Calculated elastic constants and anisotropy of Mg2SiO4 spinel at high pressure, Geophys. Res. Lett., 24, 2841, 10.1029/97GL02975
Kiefer, 1999, Normal and inverse ringwoodite at high pressures, Am. Mineral., 84, 288, 10.2138/am-1999-0311
Klotz, 2009, Hydrostatic limits of 11 pressure transmitting media, J. Phys. D: Appl. Phys., 42, 075413, 10.1088/0022-3727/42/7/075413
Kohlstedt, 1996, Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4, Contrib. Mineral. Petrol., 123, 345, 10.1007/s004100050161
Kudoh, 2000, Structure and cation disorder of hydrous ringwoodite, γ-Mg1.89Si0.98H0.30O4, Phys. Chem. Mineral., 27, 474, 10.1007/s002690000091
Liebermann, 1975, Elasticity of olivine (α), beta (β), and spinel (γ) polymorphs of germanates and silicates, Geophys. J. R. Astr. Soc., 42, 899, 10.1111/j.1365-246X.1975.tb06458.x
Liebermann, 1977, Elasticity and phase equilibria of spinel disproportionation reactions, Geophys. J. R. Astr. Soc., 50, 553, 10.1111/j.1365-246X.1977.tb01335.x
Li, 1996, Sound velocity of olivine and beta polymorphs of Mg2SiO4 at Earth's transition zone pressures, Geophys. Res. Lett., 23, 2259, 10.1029/96GL02084
Li, 1998, Elasticity of wadsleyite to 7 GPa and 873 kelvin, Science, 281, 675, 10.1126/science.281.5377.675
Li, 2003, Compressional and shear wave velocities of ringwoodite γ-Mg2SiO4 to 12 GPa, Am. Mineral., 88, 1312, 10.2138/am-2003-8-913
Li, 2007, Indoor seismology by probing the Earth's interior by using sound velocity measurements at high pressures and temperatures, Proc. Natl. Acad. Sci. U. S. A., 104, 9145, 10.1073/pnas.0608609104
Li, 2014, Study of the Earth's interior using measurements of sound velocities in minerals by ultrasonic interferometry, Phys. Earth Planet. Inter., 233, 135, 10.1016/j.pepi.2014.05.006
Li, 2011, Electronegativity-related bulk moduli of crystal materials, Phys. Status Solidi B, 246, 1227, 10.1002/pssb.201046448
Li, 2006, Elasticity of Mg2SiO4 ringwoodite at mantle conditions, Phys. Earth Planet. Inter., 157, 181, 10.1016/j.pepi.2006.04.002
Litasov, 2003, Stability of various hydrous phases in CMAS pyrolite-H2O system up to 25 GPa, Phys. Chem. Mineral., 30, 147, 10.1007/s00269-003-0301-y
Liu, 1989, Prediction of new low compressibility solids, Science, 245, 841, 10.1126/science.245.4920.841
Liu, 1974, Isothermal compressions of a spinel phase of Co2SiO4 and magnesian ilmenite, J. Geophys. Res., 79, 1171, 10.1029/JB079i008p01171
Liu, 1975, Disproportionation of Ni2SiO4 to stishovite plus bunsenite at high pressures and temperatures, Earth Planet. Sci. Lett., 24, 357, 10.1016/0012-821X(75)90141-7
Liu, 1975, High-pressure disproportionation of Co2SiO4 spinel and implications for Mg2SiO4 spinel, Phys. Earth Planet. Inter., 25, 286, 10.1016/0012-821X(75)90243-5
Liu, 1976, High-pressure phases of Co2GeO4, Ni2GeO4, Mn2GeO4 and MnGeO3: implications for the germanate-silicate modeling scheme and the Earth's mantle, Earth Planet. Sci. Lett., 31, 393, 10.1016/0012-821X(76)90120-5
Liu, 2008, Compressional and shear wave velocities of Fe2SiO4 spinel at high pressure and high temperature, High Press. Res., 28, 405, 10.1080/08957950802296287
Liu, 1990, High-temperature X-ray diffraction study of Co3O4: transition from normal to disordered spinel, Phys. Chem. Mineral., 17, 168, 10.1007/BF00199669
Liu, 2006, Partial melting of spinel lherzolite in the system CaO-MgO-Al2O3-SiO2-H2O-CO2-Na2O at 1.1 GPa, J. Petrol., 47, 409, 10.1093/petrology/egi081
Liu, 2009, Compressibility of a natural kyanite to 17.5 GPa, Prog. Nat. Sci., 19, 1281, 10.1016/j.pnsc.2009.04.001
Liu, 2011, Synthetic lead bromapatite: X-ray structure at ambient pressure and compressibility up to about 20 GPa, Phys. Chem. Mineral., 38, 397, 10.1007/s00269-010-0413-0
Liu, 2011, Isotropic thermal expansivity and anisotropic compressibility of ReB2, Chin. Phys. Lett., 28, 036401, 10.1088/0256-307X/28/3/036401
Ma, 1975, Structure refinement of high-pressure Ni2SiO4 spinel, Z. Kristallogr., 141, 126, 10.1524/zkri.1975.141.1-2.126
Mao, 1969, Effect of pressure and temperature on the molar volumes of wüstite and of three (Fe, Mg)2SiO4 spinel solid solutions, J. Geophys. Res., 74, 1061, 10.1029/JB074i004p01061
Mao, 1970, Isothermal compression of the spinel phase of Ni2SiO4 up to 300 kilobars at room temperature, Phys. Earth Planet. Inter., 3, 51, 10.1016/0031-9201(70)90043-9
Mao, 2012, Sound velocities of hydrous ringwoodite to 16 GPa and 673 K, Earth Planet. Sci. Lett., 331–332, 112, 10.1016/j.epsl.2012.03.001
Matsui, 1999, Computer simulation of the Mg2SiO4 phases with application to the 410 km seismic discontinuity, Phys. Earth Planet. Inter., 116, 9, 10.1016/S0031-9201(99)00119-3
Matsui, 2006, Equation of state of (Mg0.8,Fe0.2)2SiO4 ringwoodite from synchrotron X-ray diffraction up to 20 GPa and 1700 K, Eur. J. Mineral., 18, 523, 10.1127/0935-1221/2006/0018-0523
Mayama, 2005, Temperature dependence of the elastic moduli of ringwoodite, Phys. Earth Planet. Inter., 148, 353, 10.1016/j.pepi.2004.09.007
Meng, 1994, Hydrostatic compression of γ-Mg2SiO4 to mantle pressure and 700 K: thermal equation of state and related thermoelastic properties, Phys. Chem. Mineral., 21, 407, 10.1007/BF00203299
Millard, 1995, Study of the cubic to tetragonal transition in Mg2TiO4 and Zn2TiO4 spinels by 17O MAS NMR and Rietveld refinement of X-ray diffraction data, Am. Mineral., 80, 885, 10.2138/am-1995-9-1003
Mizukami, 1975, High-pressure X-ray diffraction studies on β- and γ-Mg2SiO4, Phys. Earth Planet. Inter., 10, 177, 10.1016/0031-9201(75)90036-9
Mizutani, 1970, Compressional-wave velocities of fayalite, Fe2SiO4 spinel, and coesite, J. Geophys. Res., 75, 2741, 10.1029/JB075i014p02741
Morimoto, 1974, Crystal structures of three polymorphs of Co2SiO4, Am. Mineral., 59, 475
Nestola, 2007, Comparative compressibility and structural behavior of spinel MgAl2O4 at high pressures: the independency on the degree of cation order, Am. Mineral., 92, 1838, 10.2138/am.2007.2573
Nestola, 2009, Effects of non-stoichiometry on the spinel structure at high pressure: implications for Earth's mantle mineralogy, Geochimi. Cosmochimi. Acta, 73, 489, 10.1016/j.gca.2008.11.001
Nestola, 2009, The effect of non-stoichiometry on the high-temperature behaviour of MgAl2O4 spinel, Mineral. Mag., 73, 301, 10.1180/minmag.2009.073.2.301
Nestola, 2010, New accurate compression data for γ-Fe2SiO4, Phys. Earth Planet. Inter., 183, 421, 10.1016/j.pepi.2010.09.007
Nestola, 2011, High-pressure crystal structure investigation of synthetic Fe2SiO4 spinel, Mineral. Mag., 75, 2649, 10.1180/minmag.2011.075.5.2649
Nestola, 2011, First crystal-structure determination of olivine in diamond: composition and implications for provenance in the Earth's mantle, Earth Planet. Sci. Lett., 305, 249, 10.1016/j.epsl.2011.03.007
Newton, 1980, Volume behavior of silicate solid solutions, Am. Mineral., 65, 733
Nishihara, 2004, Thermal equation of state of (Mg0.91Fe0.09)2SiO4 ringwoodite, Phys. Earth Planet. Inter., 143–144, 33, 10.1016/j.pepi.2003.02.001
Nunez Valdez, 2012, Thermoelastic properties of ringwoodite (Fex,Mg1-x)2SiO4: its relationship to the 520 km seismic discontinuity, Earth Planet. Sci. Lett., 351–352, 115, 10.1016/j.epsl.2012.07.024
Ohtani, 1979, Melting relation of Fe2SiO4 up to about 200 kbar, J. Phys. Earth, 27, 189, 10.4294/jpe1952.27.189
Ohtani, 2000, Stability of dense hydrous magnesium silicate phases in the systems Mg2SiO4-H2O and MgSiO3-H2O at pressures up to 27 GPa, Phys. Chem. Mineral., 27, 533, 10.1007/s002690000097
O'Neill, 1983, Simple spinels: crystallographic parameters, cation radii, lattice energies, and cation distribution, Am. Mineral., 68, 181
O'Neill, 2003, An in situ neutron diffraction study of cation disordering in synthetic qandilite Mg2TiO4 at high temperatures, Am. Mineral., 88, 860, 10.2138/am-2003-5-615
Panero, 2008, Cation disorder in ringwoodite and its effects on wave speeds in the Earth's transition zone, J. Geophys. Res., 113, B10204, 10.1029/2008JB005676
Pearson, 2014, Hydrous mantle transition zone indicated by ringwoodite included within diamond, Nature, 507, 221, 10.1038/nature13080
Piekarz, 2002, High-pressure and thermal properties of γ-Mg2SiO4 from first-principles calculations, J. Chem. Phys., 117, 3340, 10.1063/1.1494802
Rigden, 1988, Pressure dependence of the elastic wave velocities from Mg2GeO4 spinel to 3 GPa, Geophys. Res. Lett., 15, 605, 10.1029/GL015i006p00605
Rigden, 1991, Elasticity of germanate and silicate spinels at high pressure, J. Geophys. Res., 96, 9999, 10.1029/90JB02490
Ringwood, 1958, The constitution of the mantle-II. Further data on the olivine-spinel transition, Geochim. Cosmochim. Acta, 15, 18, 10.1016/0016-7037(58)90005-X
Ringwood, 1962, Prediction and confirmation of olivine-spinel transformation in Ni2SiO4, Geochim. Cosmochim. Acta, 26, 457, 10.1016/0016-7037(62)90090-X
Ringwood, 1963, Olivine-spinel transformation in cobalt orthosilicate, Nature, 198, 79, 10.1038/198079a0
Ringwood, 1970, The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures, Phys. Earth Planet. Inter., 3, 89, 10.1016/0031-9201(70)90046-4
Ringwood, 1975
Rozenberg, 2007, Structural characterization of temperature- and pressure-induced inverse↔normal spinel transformation in magnetite, Phys. Rev. B, 75, 10.1103/PhysRevB.75.020102
Sakamoto, 1962, Magnetic properties of cobalt titanate, J. Phys. Soc. Jpn., 17, 99, 10.1143/JPSJ.17.99
Sasaki, 1982, Single-crystal X ray study of γ Mg2SiO4, J. Geophys. Res., 87, 7829, 10.1029/JB087iB09p07829
Sato, 1977, Equation of state of mantle minerals determined through high-pressure X-ray study, 307
Sawada, 1996, Electron density study of spinels: magnesium titanium oxide (Mg2TiO4, Mater. Res. Bull., 31, 355, 10.1016/0025-5408(96)00010-4
Sedler, 1994, An X-ray powder diffraction study of synthetic (Fe,Mn)2TiO4 spinel, Eur. J. Mineral., 6, 873, 10.1127/ejm/6/6/0873
Shieh, 2006, Equation of state of the postperovskite phase synthesized from a natural (Mg,Fe)SiO3 orthopyroxene, Proc. Natl. Acad. Sci. U. S. A., 103, 3039, 10.1073/pnas.0506811103
Sinogeikin, 1997, Elasticity of natural majorite and ringwoodite from the Catherwood meteorite, Geophys. Res. Lett., 24, 3265, 10.1029/97GL03217
Sinogeikin, 1998, Sound velocities and elastic properties of Fe-bearing wadsleyite and ringwoodite, J. Geophys. Res., 103, 20819, 10.1029/98JB01819
Sinogeikin, 2003, Single-crystal elasticity of ringwoodite to high pressures and high temperatures: implications for the 520 km seismic discontinuity, Phys. Earth Planet. Inter., 136, 41, 10.1016/S0031-9201(03)00022-0
Smyth, 2003, Structural systematics of hydrous ringwoodite and water in Earth's interior, Am. Mineral., 88, 1402, 10.2138/am-2003-1001
Sobolev, 2008, Olivine inclusions in Siberian diamonds: high-precision approach to minor elements, Eur. J. Mineral., 20, 305, 10.1127/0935-1221/2008/0020-1829
Stixrude, 2011, Thermodynamics of mantle minerals – II. Phase equilibria, Geophys. J. Int., 184, 1180, 10.1111/j.1365-246X.2010.04890.x
Suito, 1972, Phase transitions of pure Mg2SiO4 into a spinel structure under high pressures and high temperatures, J. Phys. Earth, 20, 225, 10.4294/jpe1952.20.225
Syono, 1971, Anomalous elastic properties of Fe2TiO4, J. Phys. Soc. Jpn., 31, 471, 10.1143/JPSJ.31.471
Verwey, 1947, Physical properties and cation arrangement of oxides with spinel structures I. Cation arrangement in spinels, J. Chem. Phys., 15, 174, 10.1063/1.1746464
Von Dreele, 1977, Refinement of the crystal structure of Mg2GeO4 spinel, Acta Crystallogr. B, 33, 2287, 10.1107/S056774087700822X
Wang, 2012, In situ high-temperature powder X-ray diffraction study on the spinel solid solutions (Mg1-xMnx)Cr2O4, Phys. Chem. Mineral., 39, 189, 10.1007/s00269-011-0474-8
Wang, 2000, Subsolidus and melting experiments of K-doped peridotite KLB-1 to 27 GPa: its geophysical and geochemical implications, J. Geophys. Res., 105, 2855, 10.1029/1999JB900366
Wang, 2002, High pressure Raman spectroscopic study of spinel MgCr2O4, J. Phys. Chem. Solids, 63, 2057, 10.1016/S0022-3697(02)00194-4
Wang, 2002, In situ x-ray diffraction and Raman spectroscopy of pressure-induced phase transformation in spinel Zn2TiO4, Phys. Rev. B, 66, 024103, 10.1103/PhysRevB.66.024103
Wang, 2003, High pressure Raman spectroscopy of spinel-type ferrite ZnFe2O4, J. Phys. Chem. Solids, 64, 2517, 10.1016/j.jpcs.2003.08.005
Wechsler, 1984, Crystal structure and cation distribution in titanomagnetites (Fe3-xTixO4), Am. Mineral., 69, 754
Wechsler, 1989, Structure refinements of Mg2TiO4, MgTiO3 and MgTi2O5 by time-of-flight neutron powder diffraction, Acta Crystallogr. B, 45, 542, 10.1107/S010876818900786X
Weidner, 1983, Elastic properties of the olivine and spinel polymorphs of Mg2GeO4, and evaluation of elastic analogues, Phys. Earth Planet. Inter., 40, 65, 10.1016/0031-9201(85)90006-8
Weidner, 1984, Single-crystal elastic properties of the spinel phase of Mg2SiO4, J. Geophys. Res., 89, 7852, 10.1029/JB089iB09p07852
Weidner, 1987, Mineral physics constraints on a uniform mantle composition, Geophys. Monogr., 39, 439
Welch, 2001, The crystal structure of brunogeierite, Fe2GeO4 spinel, Mineral. Mag., 65, 441, 10.1180/002646101300119529
Wilburn, 1976, Isothermal compression of spinel (Fe2SiO4) up to 75 kbar under hydrostatic conditions, High Temp. High Press., 8, 343
Wittlinger, 1998, Pressure-induced order-disorder phase transition of spinel single crystals, Acta Crystallogr. B, 54, 714, 10.1107/S010876819800161X
Wood, 2000, Phase transformations and partitioning relations in peridotite under lower mantle conditions, Earth Planet. Sci. Lett., 174, 341, 10.1016/S0012-821X(99)00273-3
Xiong, 2015, Equation of state of a synthetic ulvöspinel, (Fe1.94Ti0.03)Ti1.00O4.00, at ambient temperature, Phys. Chem. Mineral., 42, 171, 10.1007/s00269-014-0704-y
Yagi, 1974, Crystal structures of spinel polymorphs of Fe2SiO4 and Ni2SiO4, Am. Mineral., 59, 486
Yamanaka, 1986, Crystal structures of Ni2SiO4 and Fe2SiO4 as a function of temperature and heating duration, Phys. Chem. Mineral., 13, 227, 10.1007/BF00308273
Yamanaka, 2009, Jahn-Teller transition of Fe2TiO4 observed by maximum entropy method at high pressure and low temperature, Phys. Rev., B80, 134120, 10.1103/PhysRevB.80.134120
Yamanaka, 2013, High-pressure phase transitions of Fe3-xTixO4 solid solution up to 60 GPa correlated with electronic spin transition, Am. Mineral., 98, 736, 10.2138/am.2013.4182
Ye, 2012, Compressibility and thermal expansion of hydrous ringwoodite with 2.5(3) wt% H2O, Am. Mineral., 97, 573, 10.2138/am.2012.4010
Yong, 2012, Pressure-induced phase transition study of magnesiochromite (MgCr2O4) by Raman spectroscopy and X-ray diffraction, Phys. Earth Planet. Inter., 196–197, 75, 10.1016/j.pepi.2012.02.011
Yoshino, 2008, Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite, Nature, 451, 326, 10.1038/nature06427