Anhydrous ringwoodites in the mantle transition zone: Their bulk modulus, solid solution behavior, compositional variation, and sound velocity feature

Solid Earth Sciences - Tập 1 Số 1 - Trang 28-47 - 2016
Xi Liu1,2, Zhihua Xiong1,2, Linlin Chang3, Qiang He1,2, Fei Wang1,2, S. R. Shieh4, Chun‐Ming Wu3, Baosheng Li5, Lifei Zhang1,2
1Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, Peking University, Beijing 100871, China
2School of Earth and Space Sciences, Peking University, Beijing, 100871, China
3College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
4Department of Earth Sciences, University of Western Ontario, London, Ontario, N6A 5B7, Canada
5Mineral Physics Institute, State University of New York, Stony Brook, NY 11794, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akaogi, 1989, Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: calorimetric measurements, thermochemical calculation, and geophysical application, J. Geophys. Res., 94, 15671, 10.1029/JB094iB11p15671

Akimoto, 1965, The olivine-spinel transition in Fe2SiO4 and Ni2SiO4, J. Geophys. Res., 70, 1969, 10.1029/JZ070i008p01969

Akimoto, 1967, High-pressure decomposition for some titanate spinels, J. Chem. Phys., 47, 1813, 10.1063/1.1712170

Akimoto, 1968, Olivine-spinel solid solution equilibria in the system Mg2SiO4-Fe2SiO4, J. Geophys. Res., 73, 1467, 10.1029/JB073i004p01467

Akimoto, 1968, High-pressure transformation in Co2SiO4 olivine and some geophysical implications, Phys. Earth Planet. Inter., 1, 498, 10.1016/0031-9201(68)90018-6

Akimoto, 1972, The system MgO-FeO-SiO2 at high pressures and temperatures-phase equilibria and elastic properties, Tectonophysics, 13, 161, 10.1016/0040-1951(72)90019-4

Anderson, 1970, The bulk modulus-volume relationship for oxides, J. Geophys. Res., 75, 3494, 10.1029/JB075i017p03494

Anderson, 1986, Transition region of the Earth's upper mantle, Nature, 320, 321, 10.1038/320321a0

Antao, 2005, Effects of high pressure and high temperature on cation ordering in magnesioferrite, MgFe2O4, using in situ synchrotron X-ray powder diffraction up to 1430 K and 6 GPa, Am. Mineral., 90, 1500, 10.2138/am.2005.1797

Armentrout, 2011, High pressure, high temperature equation of state for Fe2SiO4 ringwoodite and implications for the Earth's transition zone, Geophys. Res. Lett., 38, L08309, 10.1029/2011GL046949

Bartram, 1961, Compound formation and crystal structure in the system ZnO-TiO2, J. Am. Ceram. Soc., 44, 493, 10.1111/j.1151-2916.1961.tb13712.x

Bass, 1984, Elasticity of the olivine and spinel polymorphs of Ni2SiO4, Phys. Chem. Mineral., 10, 261, 10.1007/BF00311951

Bolfan-Casanova, 2000, Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: implications for the distribution of water in the Earth's mantle, Earth Planet. Sci. Lett., 182, 209, 10.1016/S0012-821X(00)00244-2

Cammarano, 2007, Insights into the nature of the transition zone from physically constrained inversion of long-period seismic data, Proc. Natl. Acad. Sci. U. S. A., 104, 9139, 10.1073/pnas.0608075104

Chang, 2013, Expansivity and compressibility of wadeite-type K2Si4O9 determined by in situ high T/P experiments, and their implication, Phys. Chem. Mineral., 40, 29, 10.1007/s00269-012-0543-7

Chopelas, 1991, Vibrational spectroscopy of aluminate spinels at 1 atm and of MgAl2O4 to over 200 kbar, Phys. Chem. Mineral., 18, 279, 10.1007/BF00200186

Cobden, 2008, Thermochemical interpretation of one-dimensional seismic reference models for the upper mantle: evidence for bias due to heterogeneity, Geophys. J. Int., 175, 627, 10.1111/j.1365-246X.2008.03903.x

Dachille, 1960, High pressure studies of the system Mg2GeO4-Mg2SiO4 with special reference to the olivine-spinel transition, Am. J. Sci., 258, 225, 10.2475/ajs.258.4.225

Datta, 1967, Equilibrium order-disorder in spinels, J. Am. Ceram. Soc., 50, 578, 10.1111/j.1151-2916.1967.tb15002.x

Demouchy, 2005, Pressure and temperature-dependence of water solubility in Fe-free wadsleyite, Am. Mineral., 90, 1084, 10.2138/am.2005.1751

Ding, 1990, X-ray powder structural analysis of the spinel polymorph of Fe2SiO4, Powder Diffr., 5, 221, 10.1017/S0885715600015852

Dube, 1991, X-ray, electrical and catalytic studies of the system CoFe2O4-Co2TiO4, Bull. Chem. Soc. Jpn., 64, 2449, 10.1246/bcsj.64.2449

Duffy, 1989, Seismic velocities in mantle minerals and the mineralogy of the upper mantle, J. Geophys. Res., 94, 1895, 10.1029/JB094iB02p01895

Dziewonski, 1981, Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297, 10.1016/0031-9201(81)90046-7

Fei, 1991, Experimental determination of element partitioning and calculation of phase relations in the MgO-FeO-SiO2 system at high pressure and high temperature, J. Geophys. Res., 96, 2157, 10.1029/90JB02164

Fei, 2004, Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications, J. Geophys. Res., 109, B02305, 10.1029/2003JB002562

Finger, 1979, Crystal structures and electron densities of nickel and iron silicate spinels at elevated temperature or pressure, Am. Mineral., 64, 1002

Finger, 1986, High-pressure crystal chemistry of spinel (MgAl2O4) and magnetite (Fe3O4): comparisons with silicate spinels, Phys. Chem. Mineral., 13, 215, 10.1007/BF00308271

Forster, 1965, A neutron and x-ray diffraction study of ulvospinel, Fe2TiO4, Acta Crystallogr., 18, 859, 10.1107/S0365110X65002104

Frost, 2003, Fe2+-Mg partitioning between garnet, magnesiowüstite, and (Mg,Fe)2SiO4 phases of the transition zone, Am. Mineral., 88, 387, 10.2138/am-2003-2-315

Frost, 2003, The structure and sharpness of (Mg,Fe)2SiO4 phase transformations in the transition zone, Earth Planet. Sci. Lett., 216, 313, 10.1016/S0012-821X(03)00533-8

Fukao, 2001, Stagnant slabs in the upper and lower mantle transition region, Rev. Geophys., 39, 291, 10.1029/1999RG000068

Furuhashi, 1973, Cation distribution in the solid solutions of the CoAl2O4-GeCo2O4 system, J. Inorg. Nucl. Chem., 35, 3707, 10.1016/0022-1902(73)80059-4

Furuhashi, 1973, Determination of cation distribution in spinels by X-ray diffraction method, J. Inorg. Nucl. Chem., 35, 3009, 10.1016/0022-1902(73)80531-7

Gatta, 2014, Static positional disorder in ulvöspinel: a single-crystal neutron diffraction study, Am. Mineral., 99, 255, 10.2138/am.2014.4702

Gössler, 1996, Seismic evidence for very deep roots of continents, Earth Planet. Sci. Lett., 138, 1, 10.1016/0012-821X(95)00215-X

Green, 2010, Seismic evidence of negligible water carried below 410-km depth in subducting lithosphere, Nature, 467, 828, 10.1038/nature09401

Hariya, 1970, The stability and phase transition of the system Fe2GeO4-Fe2SiO4, J. Fac. Sci. Hokkaido Univ., 4, 355

Hazen, 1993, Comparative compressibilities of silicate spinels: anomalous behavior of (Mg,Fe)2SiO4, Science, 259, 206, 10.1126/science.259.5092.206

Hazen, 1993, Crystal chemistry of ferromagnesian silicate spinels: evidence for Mg-Si disorder, Am. Mineral., 78, 1320

Hazen, 1999, Effects of cation substitution and order-disorder on P-V-T equations of state of cubic spinels, Am. Mineral., 84, 1956, 10.2138/am-1999-11-1224

Helffrich, 2000, Topography of the transition zone seismic discontinuities, Rev. Geophys., 38, 141, 10.1029/1999RG000060

He, 2012, Solid solutions between lead fluorapatite and lead fluorvanadate apatite: compressibility determined by using a diamond-anvil cell coupled with synchrotron X-ray diffraction, Phys. Chem. Mineral., 39, 219, 10.1007/s00269-011-0477-5

He, 2013, Expansivity and compressibility of strontium and barium fluorapatite determined by in situ X-ray diffraction at high-T/P conditions: significance of the M-site cations, Phys. Chem. Mineral., 40, 349, 10.1007/s00269-013-0576-6

Higo, 2006, The effect of iron on the elastic properties of ringwoodite at high pressure, Phys. Earth Planet. Inter., 159, 276, 10.1016/j.pepi.2006.08.004

Higo, 2008, Elastic wave velocities of (Mg0.91Fe0.09)2SiO4 ringwoodite under P-T conditions of the mantle transition region, Phys. Earth Planet. Inter., 166, 167, 10.1016/j.pepi.2008.01.003

Hirose, 2002, Phase transitions in pyrolitic mantle around 670-km depth: implications for upwelling of plumes from the lower mantle, J. Geophys. Res., 107, 2078, 10.1029/2001JB000597

Hofmeister, 2001, Evaluation of shear moduli and other properties of silicates with the spinel structure from IR spectroscopy, Am. Mineral., 86, 622, 10.2138/am-2001-5-604

Holtzclaw, 1988

Hutchison, 2001, Mineral inclusions in diamonds: associations and chemical distinctions around the 670-km discontinuity, Contrib. Mineral. Petrol., 142, 119, 10.1007/s004100100279

Inagaki, 1977, Solid solubility and cation distribution in the system Co2GeO4-Mg2GeO4, J. Solid State Chem., 20, 169, 10.1016/0022-4596(77)90064-0

Inoue, 1998, Elastic properties of hydrous ringwoodite (γ-phase) in Mg2SiO4, Earth Planet. Sci. Lett., 160, 107, 10.1016/S0012-821X(98)00077-6

Irifune, 1987, Phase transformation in primitive MORB and pyrolite compositions to 25 GPa and some geophysical implications, 221

Irifune, 1994, Absence of an aluminous phase in the upper part of the Earth's lower mantle, Nature, 370, 131, 10.1038/370131a0

Irifune, 1998, Iron partitioning in a pyrolite mantle and the nature of the 410-km seismic discontinuity, Nature, 392, 702, 10.1038/33663

Irifune, 2008, Sound velocities of majorite garnet and the composition of the mantle transition region, Nature, 451, 814, 10.1038/nature06551

Ita, 1992, Petrology, elasticity and composition of the mantle transition zone, J. Geophys. Res., 97, 6849, 10.1029/92JB00068

Ito, 1975, High-pressure decompositions in cobalt and nickel silicates, Phys. Earth Planet. Inter., 10, 88, 10.1016/0031-9201(75)90022-9

Ito, 1979, High-pressure transformations in silicates, germanates, and titanates with ABO3 stoichiometry, Phys. Chem. Mineral., 4, 265, 10.1007/BF00307950

Ito, 1989, A temperature profile of the mantle transition zone, Geophys. Res. Lett., 16, 425, 10.1029/GL016i005p00425

Jackson, 1998, Elasticity, composition and temperature of the Earth's lower mantle: a reappraisal, Geophys. J. Int., 134, 291, 10.1046/j.1365-246x.1998.00560.x

Jackson, 1998, Composition and temperature of the Earth's mantle: seismological models interpreted through experimental studies of Earth materials, 405

Jackson, 2000, Sound velocities and elastic properties of γ-Mg2SiO4 to 873 K by Brillouin spectroscopy, Am. Mineral., 85, 296, 10.2138/am-2000-2-306

Katsura, 1989, The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel, J. Geophys. Res., 94, 15663, 10.1029/JB094iB11p15663

Katsura, 2004, Thermal expansion of Mg2SiO4 ringwoodite at high pressures, J. Geophys. Res., 109, B12209, 10.1029/2004JB003094

Kelbert, 2009, Global electromagnetic induction constraints on transition-zone water content variations, Nature, 460, 1003, 10.1038/nature08257

Kennett, 1995, Constraints on seismic velocities in the Earth from travel times, Geophys. J. Int., 122, 108, 10.1111/j.1365-246X.1995.tb03540.x

Kiefer, 1997, Calculated elastic constants and anisotropy of Mg2SiO4 spinel at high pressure, Geophys. Res. Lett., 24, 2841, 10.1029/97GL02975

Kiefer, 1999, Normal and inverse ringwoodite at high pressures, Am. Mineral., 84, 288, 10.2138/am-1999-0311

Klotz, 2009, Hydrostatic limits of 11 pressure transmitting media, J. Phys. D: Appl. Phys., 42, 075413, 10.1088/0022-3727/42/7/075413

Kohlstedt, 1996, Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4, Contrib. Mineral. Petrol., 123, 345, 10.1007/s004100050161

Kudoh, 2000, Structure and cation disorder of hydrous ringwoodite, γ-Mg1.89Si0.98H0.30O4, Phys. Chem. Mineral., 27, 474, 10.1007/s002690000091

Liebermann, 1975, Elasticity of olivine (α), beta (β), and spinel (γ) polymorphs of germanates and silicates, Geophys. J. R. Astr. Soc., 42, 899, 10.1111/j.1365-246X.1975.tb06458.x

Liebermann, 1977, Elasticity and phase equilibria of spinel disproportionation reactions, Geophys. J. R. Astr. Soc., 50, 553, 10.1111/j.1365-246X.1977.tb01335.x

Li, 1996, Sound velocity of olivine and beta polymorphs of Mg2SiO4 at Earth's transition zone pressures, Geophys. Res. Lett., 23, 2259, 10.1029/96GL02084

Li, 1998, Elasticity of wadsleyite to 7 GPa and 873 kelvin, Science, 281, 675, 10.1126/science.281.5377.675

Li, 2003, Compressional and shear wave velocities of ringwoodite γ-Mg2SiO4 to 12 GPa, Am. Mineral., 88, 1312, 10.2138/am-2003-8-913

Li, 2007, Indoor seismology by probing the Earth's interior by using sound velocity measurements at high pressures and temperatures, Proc. Natl. Acad. Sci. U. S. A., 104, 9145, 10.1073/pnas.0608609104

Li, 2014, Study of the Earth's interior using measurements of sound velocities in minerals by ultrasonic interferometry, Phys. Earth Planet. Inter., 233, 135, 10.1016/j.pepi.2014.05.006

Li, 2011, Electronegativity-related bulk moduli of crystal materials, Phys. Status Solidi B, 246, 1227, 10.1002/pssb.201046448

Li, 2006, Elasticity of Mg2SiO4 ringwoodite at mantle conditions, Phys. Earth Planet. Inter., 157, 181, 10.1016/j.pepi.2006.04.002

Litasov, 2003, Stability of various hydrous phases in CMAS pyrolite-H2O system up to 25 GPa, Phys. Chem. Mineral., 30, 147, 10.1007/s00269-003-0301-y

Liu, 1989, Prediction of new low compressibility solids, Science, 245, 841, 10.1126/science.245.4920.841

Liu, 1974, Isothermal compressions of a spinel phase of Co2SiO4 and magnesian ilmenite, J. Geophys. Res., 79, 1171, 10.1029/JB079i008p01171

Liu, 1975, Disproportionation of Ni2SiO4 to stishovite plus bunsenite at high pressures and temperatures, Earth Planet. Sci. Lett., 24, 357, 10.1016/0012-821X(75)90141-7

Liu, 1975, High-pressure disproportionation of Co2SiO4 spinel and implications for Mg2SiO4 spinel, Phys. Earth Planet. Inter., 25, 286, 10.1016/0012-821X(75)90243-5

Liu, 1976, High-pressure phases of Co2GeO4, Ni2GeO4, Mn2GeO4 and MnGeO3: implications for the germanate-silicate modeling scheme and the Earth's mantle, Earth Planet. Sci. Lett., 31, 393, 10.1016/0012-821X(76)90120-5

Liu, 1976, The post-spinel phases of forsterite, Nature, 262, 770, 10.1038/262770a0

Liu, 2008, Compressional and shear wave velocities of Fe2SiO4 spinel at high pressure and high temperature, High Press. Res., 28, 405, 10.1080/08957950802296287

Liu, 1990, High-temperature X-ray diffraction study of Co3O4: transition from normal to disordered spinel, Phys. Chem. Mineral., 17, 168, 10.1007/BF00199669

Liu, 2006, Partial melting of spinel lherzolite in the system CaO-MgO-Al2O3-SiO2-H2O-CO2-Na2O at 1.1 GPa, J. Petrol., 47, 409, 10.1093/petrology/egi081

Liu, 2008, High-pressure study on lead fluorapatite, Am. Mineral., 93, 1581, 10.2138/am.2008.2816

Liu, 2009, Compressibility of a natural kyanite to 17.5 GPa, Prog. Nat. Sci., 19, 1281, 10.1016/j.pnsc.2009.04.001

Liu, 2011, Synthetic lead bromapatite: X-ray structure at ambient pressure and compressibility up to about 20 GPa, Phys. Chem. Mineral., 38, 397, 10.1007/s00269-010-0413-0

Liu, 2011, Isotropic thermal expansivity and anisotropic compressibility of ReB2, Chin. Phys. Lett., 28, 036401, 10.1088/0256-307X/28/3/036401

Ma, 1975, Structure refinement of high-pressure Ni2SiO4 spinel, Z. Kristallogr., 141, 126, 10.1524/zkri.1975.141.1-2.126

Mao, 1969, Effect of pressure and temperature on the molar volumes of wüstite and of three (Fe, Mg)2SiO4 spinel solid solutions, J. Geophys. Res., 74, 1061, 10.1029/JB074i004p01061

Mao, 1970, Isothermal compression of the spinel phase of Ni2SiO4 up to 300 kilobars at room temperature, Phys. Earth Planet. Inter., 3, 51, 10.1016/0031-9201(70)90043-9

Mao, 2012, Sound velocities of hydrous ringwoodite to 16 GPa and 673 K, Earth Planet. Sci. Lett., 331–332, 112, 10.1016/j.epsl.2012.03.001

Matsui, 1999, Computer simulation of the Mg2SiO4 phases with application to the 410 km seismic discontinuity, Phys. Earth Planet. Inter., 116, 9, 10.1016/S0031-9201(99)00119-3

Matsui, 2006, Equation of state of (Mg0.8,Fe0.2)2SiO4 ringwoodite from synchrotron X-ray diffraction up to 20 GPa and 1700 K, Eur. J. Mineral., 18, 523, 10.1127/0935-1221/2006/0018-0523

Mayama, 2005, Temperature dependence of the elastic moduli of ringwoodite, Phys. Earth Planet. Inter., 148, 353, 10.1016/j.pepi.2004.09.007

Meng, 1994, Hydrostatic compression of γ-Mg2SiO4 to mantle pressure and 700 K: thermal equation of state and related thermoelastic properties, Phys. Chem. Mineral., 21, 407, 10.1007/BF00203299

Millard, 1995, Study of the cubic to tetragonal transition in Mg2TiO4 and Zn2TiO4 spinels by 17O MAS NMR and Rietveld refinement of X-ray diffraction data, Am. Mineral., 80, 885, 10.2138/am-1995-9-1003

Miyamoto, 1978, Melting of Mg2GeO4 under pressure, Bull. Volcanol., 41–44, 664, 10.1007/BF02597392

Mizukami, 1975, High-pressure X-ray diffraction studies on β- and γ-Mg2SiO4, Phys. Earth Planet. Inter., 10, 177, 10.1016/0031-9201(75)90036-9

Mizutani, 1970, Compressional-wave velocities of fayalite, Fe2SiO4 spinel, and coesite, J. Geophys. Res., 75, 2741, 10.1029/JB075i014p02741

Morimoto, 1974, Crystal structures of three polymorphs of Co2SiO4, Am. Mineral., 59, 475

Nestola, 2007, Comparative compressibility and structural behavior of spinel MgAl2O4 at high pressures: the independency on the degree of cation order, Am. Mineral., 92, 1838, 10.2138/am.2007.2573

Nestola, 2009, Effects of non-stoichiometry on the spinel structure at high pressure: implications for Earth's mantle mineralogy, Geochimi. Cosmochimi. Acta, 73, 489, 10.1016/j.gca.2008.11.001

Nestola, 2009, The effect of non-stoichiometry on the high-temperature behaviour of MgAl2O4 spinel, Mineral. Mag., 73, 301, 10.1180/minmag.2009.073.2.301

Nestola, 2010, New accurate compression data for γ-Fe2SiO4, Phys. Earth Planet. Inter., 183, 421, 10.1016/j.pepi.2010.09.007

Nestola, 2011, High-pressure crystal structure investigation of synthetic Fe2SiO4 spinel, Mineral. Mag., 75, 2649, 10.1180/minmag.2011.075.5.2649

Nestola, 2011, First crystal-structure determination of olivine in diamond: composition and implications for provenance in the Earth's mantle, Earth Planet. Sci. Lett., 305, 249, 10.1016/j.epsl.2011.03.007

Newton, 1980, Volume behavior of silicate solid solutions, Am. Mineral., 65, 733

Nishihara, 2004, Thermal equation of state of (Mg0.91Fe0.09)2SiO4 ringwoodite, Phys. Earth Planet. Inter., 143–144, 33, 10.1016/j.pepi.2003.02.001

Nunez Valdez, 2012, Thermoelastic properties of ringwoodite (Fex,Mg1-x)2SiO4: its relationship to the 520 km seismic discontinuity, Earth Planet. Sci. Lett., 351–352, 115, 10.1016/j.epsl.2012.07.024

Ohtani, 1979, Melting relation of Fe2SiO4 up to about 200 kbar, J. Phys. Earth, 27, 189, 10.4294/jpe1952.27.189

Ohtani, 2000, Stability of dense hydrous magnesium silicate phases in the systems Mg2SiO4-H2O and MgSiO3-H2O at pressures up to 27 GPa, Phys. Chem. Mineral., 27, 533, 10.1007/s002690000097

O'Neill, 1983, Simple spinels: crystallographic parameters, cation radii, lattice energies, and cation distribution, Am. Mineral., 68, 181

O'Neill, 2003, An in situ neutron diffraction study of cation disordering in synthetic qandilite Mg2TiO4 at high temperatures, Am. Mineral., 88, 860, 10.2138/am-2003-5-615

Panero, 2008, Cation disorder in ringwoodite and its effects on wave speeds in the Earth's transition zone, J. Geophys. Res., 113, B10204, 10.1029/2008JB005676

Pearson, 2014, Hydrous mantle transition zone indicated by ringwoodite included within diamond, Nature, 507, 221, 10.1038/nature13080

Piekarz, 2002, High-pressure and thermal properties of γ-Mg2SiO4 from first-principles calculations, J. Chem. Phys., 117, 3340, 10.1063/1.1494802

Rigden, 1988, Pressure dependence of the elastic wave velocities from Mg2GeO4 spinel to 3 GPa, Geophys. Res. Lett., 15, 605, 10.1029/GL015i006p00605

Rigden, 1991, Elasticity of germanate and silicate spinels at high pressure, J. Geophys. Res., 96, 9999, 10.1029/90JB02490

Ringwood, 1958, The constitution of the mantle-II. Further data on the olivine-spinel transition, Geochim. Cosmochim. Acta, 15, 18, 10.1016/0016-7037(58)90005-X

Ringwood, 1962, Prediction and confirmation of olivine-spinel transformation in Ni2SiO4, Geochim. Cosmochim. Acta, 26, 457, 10.1016/0016-7037(62)90090-X

Ringwood, 1963, Olivine-spinel transformation in cobalt orthosilicate, Nature, 198, 79, 10.1038/198079a0

Ringwood, 1970, The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures, Phys. Earth Planet. Inter., 3, 89, 10.1016/0031-9201(70)90046-4

Ringwood, 1975

Rozenberg, 2007, Structural characterization of temperature- and pressure-induced inverse↔normal spinel transformation in magnetite, Phys. Rev. B, 75, 10.1103/PhysRevB.75.020102

Sakamoto, 1962, Magnetic properties of cobalt titanate, J. Phys. Soc. Jpn., 17, 99, 10.1143/JPSJ.17.99

Sasaki, 1982, Single-crystal X ray study of γ Mg2SiO4, J. Geophys. Res., 87, 7829, 10.1029/JB087iB09p07829

Sato, 1977, Equation of state of mantle minerals determined through high-pressure X-ray study, 307

Sawada, 1996, Electron density study of spinels: magnesium titanium oxide (Mg2TiO4, Mater. Res. Bull., 31, 355, 10.1016/0025-5408(96)00010-4

Sedler, 1994, An X-ray powder diffraction study of synthetic (Fe,Mn)2TiO4 spinel, Eur. J. Mineral., 6, 873, 10.1127/ejm/6/6/0873

Shieh, 2006, Equation of state of the postperovskite phase synthesized from a natural (Mg,Fe)SiO3 orthopyroxene, Proc. Natl. Acad. Sci. U. S. A., 103, 3039, 10.1073/pnas.0506811103

Sinogeikin, 1997, Elasticity of natural majorite and ringwoodite from the Catherwood meteorite, Geophys. Res. Lett., 24, 3265, 10.1029/97GL03217

Sinogeikin, 1998, Sound velocities and elastic properties of Fe-bearing wadsleyite and ringwoodite, J. Geophys. Res., 103, 20819, 10.1029/98JB01819

Sinogeikin, 2003, Single-crystal elasticity of ringwoodite to high pressures and high temperatures: implications for the 520 km seismic discontinuity, Phys. Earth Planet. Inter., 136, 41, 10.1016/S0031-9201(03)00022-0

Smyth, 2003, Structural systematics of hydrous ringwoodite and water in Earth's interior, Am. Mineral., 88, 1402, 10.2138/am-2003-1001

Sobolev, 2008, Olivine inclusions in Siberian diamonds: high-precision approach to minor elements, Eur. J. Mineral., 20, 305, 10.1127/0935-1221/2008/0020-1829

Stixrude, 2011, Thermodynamics of mantle minerals – II. Phase equilibria, Geophys. J. Int., 184, 1180, 10.1111/j.1365-246X.2010.04890.x

Suito, 1972, Phase transitions of pure Mg2SiO4 into a spinel structure under high pressures and high temperatures, J. Phys. Earth, 20, 225, 10.4294/jpe1952.20.225

Syono, 1971, Anomalous elastic properties of Fe2TiO4, J. Phys. Soc. Jpn., 31, 471, 10.1143/JPSJ.31.471

Verwey, 1947, Physical properties and cation arrangement of oxides with spinel structures I. Cation arrangement in spinels, J. Chem. Phys., 15, 174, 10.1063/1.1746464

Von Dreele, 1977, Refinement of the crystal structure of Mg2GeO4 spinel, Acta Crystallogr. B, 33, 2287, 10.1107/S056774087700822X

Wang, 2003, Elastic properties of hydrous ringwoodite, Am. Mineral., 88, 1608, 10.2138/am-2003-1025

Wang, 2012, In situ high-temperature powder X-ray diffraction study on the spinel solid solutions (Mg1-xMnx)Cr2O4, Phys. Chem. Mineral., 39, 189, 10.1007/s00269-011-0474-8

Wang, 2000, Subsolidus and melting experiments of K-doped peridotite KLB-1 to 27 GPa: its geophysical and geochemical implications, J. Geophys. Res., 105, 2855, 10.1029/1999JB900366

Wang, 2002, High pressure Raman spectroscopic study of spinel MgCr2O4, J. Phys. Chem. Solids, 63, 2057, 10.1016/S0022-3697(02)00194-4

Wang, 2002, In situ x-ray diffraction and Raman spectroscopy of pressure-induced phase transformation in spinel Zn2TiO4, Phys. Rev. B, 66, 024103, 10.1103/PhysRevB.66.024103

Wang, 2003, High pressure Raman spectroscopy of spinel-type ferrite ZnFe2O4, J. Phys. Chem. Solids, 64, 2517, 10.1016/j.jpcs.2003.08.005

Wechsler, 1984, Crystal structure and cation distribution in titanomagnetites (Fe3-xTixO4), Am. Mineral., 69, 754

Wechsler, 1989, Structure refinements of Mg2TiO4, MgTiO3 and MgTi2O5 by time-of-flight neutron powder diffraction, Acta Crystallogr. B, 45, 542, 10.1107/S010876818900786X

Weidner, 1983, Elastic properties of the olivine and spinel polymorphs of Mg2GeO4, and evaluation of elastic analogues, Phys. Earth Planet. Inter., 40, 65, 10.1016/0031-9201(85)90006-8

Weidner, 1984, Single-crystal elastic properties of the spinel phase of Mg2SiO4, J. Geophys. Res., 89, 7852, 10.1029/JB089iB09p07852

Weidner, 1987, Mineral physics constraints on a uniform mantle composition, Geophys. Monogr., 39, 439

Welch, 2001, The crystal structure of brunogeierite, Fe2GeO4 spinel, Mineral. Mag., 65, 441, 10.1180/002646101300119529

Wilburn, 1976, Isothermal compression of spinel (Fe2SiO4) up to 75 kbar under hydrostatic conditions, High Temp. High Press., 8, 343

Wittlinger, 1998, Pressure-induced order-disorder phase transition of spinel single crystals, Acta Crystallogr. B, 54, 714, 10.1107/S010876819800161X

Wood, 2000, Phase transformations and partitioning relations in peridotite under lower mantle conditions, Earth Planet. Sci. Lett., 174, 341, 10.1016/S0012-821X(99)00273-3

Xiong, 2015, Equation of state of a synthetic ulvöspinel, (Fe1.94Ti0.03)Ti1.00O4.00, at ambient temperature, Phys. Chem. Mineral., 42, 171, 10.1007/s00269-014-0704-y

Yagi, 1974, Crystal structures of spinel polymorphs of Fe2SiO4 and Ni2SiO4, Am. Mineral., 59, 486

Yamanaka, 1986, Crystal structures of Ni2SiO4 and Fe2SiO4 as a function of temperature and heating duration, Phys. Chem. Mineral., 13, 227, 10.1007/BF00308273

Yamanaka, 2009, Jahn-Teller transition of Fe2TiO4 observed by maximum entropy method at high pressure and low temperature, Phys. Rev., B80, 134120, 10.1103/PhysRevB.80.134120

Yamanaka, 2013, High-pressure phase transitions of Fe3-xTixO4 solid solution up to 60 GPa correlated with electronic spin transition, Am. Mineral., 98, 736, 10.2138/am.2013.4182

Ye, 2012, Compressibility and thermal expansion of hydrous ringwoodite with 2.5(3) wt% H2O, Am. Mineral., 97, 573, 10.2138/am.2012.4010

Yong, 2012, Pressure-induced phase transition study of magnesiochromite (MgCr2O4) by Raman spectroscopy and X-ray diffraction, Phys. Earth Planet. Inter., 196–197, 75, 10.1016/j.pepi.2012.02.011

Yoshino, 2008, Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite, Nature, 451, 326, 10.1038/nature06427

Zerr, 1993, Hydrostatic compression of γ-(Mg0.6, Fe0.4)2SiO4 to 50.0 GPa, Phys. Chem. Mineral., 19, 507, 10.1007/BF00203192