The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology
Tóm tắt
Từ khóa
Tài liệu tham khảo
Andersen, 2002, Correction of common Pb in U–Pb analyses that do not report 204Pb, Chem. Geol., 192, 59, 10.1016/S0009-2541(02)00195-X
Belousova, E.A., 2000. Trace elements in zircon and apatite: application to petrogenesis and mineral exploration. Unpublished PhD thesis, Macquarie University.
Belousova, E.A., Griffin, W.L., 2001. LA-ICP-MS age of the Temora zircon. Unpublished data reported to Geoscience Australia.
Black, 1978, The age of the Mud Tank carbonatite, Strangways Range, Northern Territory, BMR J. Aust. Geol. Geophys., 3, 227
Black, 2003, TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology, Chem. Geol., 200, 155, 10.1016/S0009-2541(03)00165-7
Eggins, 1998, Deposition and element fractionation processes occurring during atmospheric pressure sampling for analysis by ICP-MS, Appl. Surf. Sci., 129, 278, 10.1016/S0169-4332(97)00643-0
Feng, 1993, Lead geochronology zircon by laser probe-inductively coupled plasma mass spectrometry (LP-ICPMS), Geochim. Cosmachim. Acta, 57, 3479, 10.1016/0016-7037(93)90553-9
Fernandez-Suarez, 1998, Geochronology and geochemistry of the Pola de Allande granitoids (northern Spain): their bearing on the Cadomian/Avalonian evolution of NW Iberia, Can. J. Earth Sci., 35, 1439, 10.1139/e98-074
Flood, 2000, The Walcha Road adamellite: a large zoned pluton in the New England batholith, Australia, Geol. Soc. Australian Abstr., 59, 152
Fryer, 1993, The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in-situ (U)–Pb geochronology, Chem. Geol., 109, 1, 10.1016/0009-2541(93)90058-Q
Fryer, 1995, The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma-mass spectrometer (LAM-ICP-MS) in the earth sciences, Can. Min., 33, 303
Guillong, 2002, Effect of particle size distribution on ICP-induced elemental fractionation in laser ablation inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 17, 831, 10.1039/B202988J
Hirata, 1995, U–Pb isotope geochronology of zircon: evaluation of the laser probe-inductively coupled plasma-mass spectrometry technique, Geochim. Cosmochim. Acta, 59, 2491, 10.1016/0016-7037(95)00144-1
Horn, 2003, The influence of ablation carrier gasses Ar, He and Ne on the particle size distribution and transport efficiencies of laser ablation-induced aerosols: implications for LA-ICP-MS, Appl. Surf. Sci., 207, 144, 10.1016/S0169-4332(02)01324-7
Horn, 2000, Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: application to U–Pb geochronology, Chem. Geol., 164, 281, 10.1016/S0009-2541(99)00168-0
Horstwood, 2001, Common-Pb and inter-element corrected U–Pb geochronology by LA-MC-ICP-MS
Jackson, 2001, The application of Nd:YAG lasers in LA-ICP-MS, vol. 29, 29
Jackson, 1996, The application of laser ablation microprobe (LAM)-ICP-MS to in situ U–Pb zircon geochronology, V.M., Goldschmidt Conference, J. Conf. Abstr., 1, 283
Ketchum, 2001, Depositional and tectonic setting of the Paleoproterozoic Lower Aillik Group, Makkovik Province, Canada: evolution of a passive margin—foredeep sequence based on petrochemistry and U–Pb (TIMS and LAM-ICP-MS) geochronology, Precambrian Res., 105, 331, 10.1016/S0301-9268(00)00118-2
Košler, 2002, U–Pb dating of detrital zircons for sediment provenance studies—a comparison of laser ablation ICP-MS and SIMS techniques, Chem. Geol., 182, 605, 10.1016/S0009-2541(01)00341-2
Li, 2001, Precise 206Pb/238U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation, Chem. Geol., 175, 209, 10.1016/S0009-2541(00)00394-6
Ludwig, K.R., 2001. Isoplot v. 2.2—a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No. 1a, 53 pp.
Mank, 1999, A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples, J. Anal. At. Spectrom., 14, 1143, 10.1039/a903304a
Norman, 1996, Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glass, Geostand. Newsl., 20, 247, 10.1111/j.1751-908X.1996.tb00186.x
Outridge, 1997, Ablative and transport fractionation of trace elements during laser sampling of glass and copper, Spectrochim. Acta, 52B, 2093, 10.1016/S0584-8547(97)00112-2
Stacey, 1975, Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sci. Lett., 26, 207, 10.1016/0012-821X(75)90088-6
Tera, 1972, U–Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks, Earth Planet. Sci. Lett., 14, 281, 10.1016/0012-821X(72)90128-8
Tiepolo, 2003, In situ Pb geochronology of zircon with laser ablation-inductively coupled plasma-sector field mass spectrometry, Chem. Geol., 199, 159, 10.1016/S0009-2541(03)00083-4
Tiepolo, 2003, A laser probe coupled with ICP-double focusing sector-field mass spectrometer for in situ analysis of geological samples and U–Pb dating of zircon, Can. Min., 41, 259, 10.2113/gscanmin.41.2.259
Van Achterbergh, 2001, Data reduction software for LA-ICP-MS: appendix, vol. 29, 239