On automorphism groups of quasiprimitive 2-arc transitive graphs
Tóm tắt
We characterize the automorphism groups of quasiprimitive 2-arc-transitive graphs of twisted wreath product type. This is a partial solution for a problem of Praeger regarding quasiprimitive 2-arc transitive graphs. The solution stimulates several further research problems regarding automorphism groups of edge-transitive Cayley graphs and digraphs.
Tài liệu tham khảo
Baddeley, R.W.: Two-arc transitive graphs and twisted wreath products. J. Algebr. Comb. 2, 215–237 (1993)
Baddeley, R.W., Praeger, C.E.: On primitive overgroups of quasiprimitive permutation groups. J. Algebra 263, 291–361 (2003)
Cameron, P.: Permutation Groups. London Mathematical Society Student Texts, vol. 45, Cambridge University Press, Cambridge (1999)
Fang, X.G., Li, C.H., Wang, J., Xu, M.Y.: On cubic Cayley graphs of finite simple groups. Discrete Math. 244, 67–75 (2002)
Fang, X.G., Havas, G., Wang, J.: A family of non-quasiprimitive graphs admitting a quasiprimitive 2-arc transitive group action. Eur. J. Comb. 20, 551–557 (1999)
Godsil, C.D.: On the full automorphism group of a graph. Combinatorica 1, 243–256 (1981)
Ivanov, A.A., Praeger, C.E.: On finite affine 2-arc transitive graphs. Eur. J. Comb. 14, 421–444 (1993)
Li, C.H.: A family quasiprimitive 2-arc-transitive graphs which have non-quasiprimitive full automorphism groups. Eur. J. Comb. 19, 499–502 (1998)
Li, C.H.: Finite s-arc transitive graphs of prime-power order. Bull. Lond. Math. Soc. 33, 129–137 (2001)
Li, C.H.: On isomorphisms of finite Cayley graphs—a survey. Discrete Math. 256, 301–334 (2002)
Li, C.H.: On finite edge-transitive Cayley graphs and rotary Cayley maps. Trans. Am. Math. Soc. 358, 4605–4635 (2006)
Li, C.H., Seress, A.: Constructions of quasiprimitive two-arc transitive graphs of product action type. In: Finite Geometries, Groups and Computation, pp. 115–124 (2006)
Praeger, C.E.: An O’Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs. J. Lond. Math. Soc. 47, 227–239 (1992)
Praeger, C.E.: On a reduction theorem for finite, bipartite 2-arc-transitive graphs. Australas. J. Comb. 7, 21–36 (1993)
Praeger, C.E.: Finite quasiprimitive graphs. In: Surveys in Combinatorics 1997, London. London Mathematical Society Lecture Notes series, vol. 241, pp. 65–85. Cambridge University Press, Cambridge (1997)
Praeger, C.E.: Finite normal edge-transitive Cayley graphs. Bull. Austral. Math. Soc. 60, 207–220 (1999)
Weiss, R.: s-transitive graphs. In: Algebraic methods in graph theory, vols. I, II, Szeged, 1978. Colloquia Mathematica Societatis Jnos Bolyai, vol. 25, pp. 827–847. North-Holland, Amsterdam (1981)
Xu, M.Y.: Automorphism groups and isomorphisms of Cayley digraphs. Discrete Math. 182, 309–320 (1998)