Feeding the world: genetically modified crops versus agricultural biodiversity

Agronomy for Sustainable Development - Tập 33 - Trang 651-662 - 2013
Sven-Erik Jacobsen1, Marten Sørensen1, Søren Marcus Pedersen2, Jacob Weiner1
1Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
2Institute of Food and Resource Economics, University of Copenhagen, Frederiksberg, Denmark

Tóm tắt

The growing demand for food poses major challenges to humankind. We have to safeguard both biodiversity and arable land for future agricultural food production, and we need to protect genetic diversity to safeguard ecosystem resilience. We must produce more food with less input, while deploying every effort to minimize risk. Agricultural sustainability is no longer optional but mandatory. There is still an on-going debate among researchers and in the media on the best strategy to keep pace with global population growth and increasing food demand. One strategy favors the use of genetically modified (GM) crops, while another strategy focuses on agricultural biodiversity. Here, we discuss two obstacles to sustainable agriculture solutions. The first obstacle is the claim that genetically modified crops are necessary if we are to secure food production within the next decades. This claim has no scientific support, but is rather a reflection of corporate interests. The second obstacle is the resultant shortage of research funds for agrobiodiversity solutions in comparison with funding for research in genetic modification of crops. Favoring biodiversity does not exclude any future biotechnological contributions, but favoring biotechnology threatens future biodiversity resources. An objective review of current knowledge places GM crops far down the list of potential solutions in the coming decades. We conclude that much of the research funding currently available for the development of GM crops would be much better spent in other research areas of plant science, e.g., nutrition, policy research, governance, and solutions close to local market conditions if the goal is to provide sufficient food for the world’s growing population in a sustainable way.

Tài liệu tham khảo

AATF (African Agricultural Technology Foundation) (2012) Support biotechnology development in Africa—private sector urged. Press release AATF. http://www.aatf-africa.org, 3 p. Ahmed I (2012) Killer seeds: the devastating impacts of Monsanto’s genetically modified seeds in India. Global Research. http://www.globalresearch.ca/killer-seeds-the-devastating-impacts-of-monsanto-s-genetically-modified-seeds-in-india/. Accessed: 12 Jan 2012 Alnwick D (1996) Significance of micronutrient deficiencies in developing and industrialized countries. In: Combs GF, Welch RM, Duxbury JM, Uphoff NT, Nesheim MC (eds) Food-based approaches to preventing micronutrient malnutrition. An international research agenda. Cornell University, Ithaca, NY, USA Barta P (2007) Feeding billions, a grain at a time. The Wall Street Journal, pp. A1. http://online.wsj.com/article/SB118556810848880619.html. 28 July 2007 Beyer P (2010) Golden rice and ‘golden’ crops for human nutrition. New Biotechnol 27:478–481 Borlaug NE (2000) Ending world hunger. The promise of biotechnology and the threat of antiscience zealotry. Plant Physiol 124:487–490 Bouisa HE, Chassyb BM, Ochandac JO (2003) Genetically modified food crops and their contribution to human nutrition and food quality. Trends Food Sci Technol 14:191–209 Brookes G (2002) The farm level impact of using Bt maize in Spain. PG Economics, UK Brun T, Reynaud J, Chevassus-Agnes S (1989) Food and nutritional impact of one home garden project in Senegal. Ecol Food Nutr 23:91–108 Bullock JM, Pywell RF, Walker KJ (2007) Long-term enhancement of agricultural production by restoration of biodiversity. J Appl Ecol 44:6–12 Burke M, Lobell D, Guarino L (2009) Shifts in African crop climates by 2050, and the implications for crop improvement and genetic resources conservation. Glob Environ Change 19:317–325 Carpenter JE (2010) Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat Biotechnol 28(4):319–321 Carpenter JE (2011) Impacts of GE crops on biodiversity. ISB News Report June 2011, 4 p. Carpenter JE, Gianessi L (1999) Herbicide tolerant soybeans: why growers are adopting roundup ready varieties. AgBio-Forum 2(2):65–72 Conner AJ, Mercer CF (2007) Breeding for success: diversity in action. Euphytica 154:261–262 Danish Ministry of Food Agriculture and Fisheries (2009) GM crops—what can it be used for? [in Danish: Fødevareministeriet GMO—Hvad kan vi bruge det til?], Fødevareministeriet. September 2009. 236 p. Dempewolf H, Bordoni P, Rieseberg LH, Engels JMM (2010) Food security: crop species diversity. Science 328:169–170 Duchin F (2005) Sustainable consumption of food: a framework for analyzing scenarios about changes in diets. J Ind Ecol 9:99–114 Enriquez J (2001) Green biotechnology and European competitiveness. Trends Biotechnol 19(4):135–139 European Union (2010) A decade of EU-funded GMO research (2001–2010). ISBN 978-92-79-16344-9. doi:10.2777/97784. 268 p Eyzaguirre PB, Linares OF (2004) Home gardens and agrobiodiversity. Smithsonian, Washington, DC, USA FAO (2007) The state of food and agriculture. Rome, xiv. 222 p. FAO (2010) Agricultural biotechnologies in developing countries: options and opportunities in crops, forestry, livestock, fisheries and agro-industry to face the challenges of food insecurity and climate change (ABDC-10). FAO International Technical Conference, Guadalajara, Mexico, 65 p Finckh MR, Gacek ES, Goyeau H, Lannou C, Merz U, Mundt CC, Munk L, Nadziak J, Newton AC, De Vallavielle-Pope C, Wolfe MS (2000) Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20:813–837 Fischer RA (2009) Farming systems of Australia: exploiting the synergy between genetic improvement and agronomy in crop physiology. In: Sadras V, Calderini D (eds). Elsevier: Amsterdam, pp 23–54 Frison E (2009) Director General calls for investment in true food security. Biodiversity news. http://www.bioversityinternational.org/news_and_events/news/news/article. Frison E, Cherfas J, Hodgkin T (2011) Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 3:238–253 Galluzzi G, Eyzaguirre P, Negri V (2010) Home gardens: neglected hotspots of agro-biodiversity and cultural diversity. Biodivers Conserv 19:3635–3654 Gassmann AJ, Petzold-Maxwell JL, Keweshan R, Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLoS One 6(7):e22629. doi:10.1371/journal.pone.0022629 Gepts P (2002) A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci 42(6):1780–1790 Gepts P (2006) Plant genetic resources conservation and utilization: the accomplishments and future of a societal insurance policy. Crop Sci 46:2278–2292 GM Compass (2009) Commercial GM crops in the EU in 2008. http://www.GMcompass.org/eng/agri_biotechnology/GM_planting/%3E392.gm_maize_cultivation_europe_2008.html. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–817 Gouse M, Pray C, Schimmelpfennig D, Kirsten J (2006) Three seasons of subsistence insect-resistant maize in South Africa: have smallholders benefited? AgBioforum 9:15–22 Gruère GP, Sun Y (2012) Measuring the contribution of Bt cotton adoption to India’s cotton yields leap. IFPRI Discussion Paper 01170, 28 p. Gruère GP, Giuliani A, Smale M (2008) Marketing underutilized plant species for the benefit of the poor: a conceptual framework. In: Kontoleon A, Pasqual U, Smale M (eds) Agrobiodiversity conservation and economic development. Routledge, Abingdon, UK, pp 73–87 Grum M (2009) Threats to biodiversity. In: Rudebjer P, Van Schlagen B, Chakeredza S, Karnau H (eds). Proc. Learning agrobiodiversity: options for universities in Sub-Saharan Africa. 21–23 January 2009, Nairobi, Kenya, pp 78–80 Guillaume P, Gruère, Purvi Mehta-Bhatt P, Sengupta D (2008) Bt cotton and farmer suicides in India, reviewing the evidence. IFPRI Discussion Paper 00808. International Food Policy Institute (IFPRI). http://www.ifpri.org/publication/bt-cotton-andfarmer-suicides-india Gurian-Sherman D (2009) Failure to yield—evaluating the performance of genetically engineered crops. Union of Concerned Scientists, 51 p. Hall L, Dexter J, Jhala A, McPherson M (2009) Biology matters: seed- and pollen-mediated gene flow in three oilseed crops, safflower, flax and oilseed rape. GMCC-09 Adelaide. http://www.gmcc-09.com/wp-content/uploads/hall.pdf. Hector A, Loreau M (2005) Relationships between biodiversity and production in grasslands at local and regional scales. In: McGilloway DA (ed) Grassland: a global resource. Wageningen Academic, Wageningen, The Netherlands, pp 295–304 Huang J, Pray C, Rozelle S (2002) Enhancing the crops to feed the poor. Nature 418:678–684 IAASTD (2009) Agriculture at a crossroads. International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD), 250 p. IFOAM (2009) Organic agriculture—a guide to climate change and food security. http://www.ifoam.org/growing_organic/1_arguments_for_oa/environmental_benefits/pdfs/IFOAM-CC-Guide-Web.pdf IPCC (2007) Climate change 2007: synthesis report, contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Pachauri RK, Reisinger A (eds). IPCC: Geneva, Switzerland, 104 p ISF (International Seed Federation) (2011) Agriculture under pressure. http://www.worldseed.org/isf/home.html ISIS (2010) Farmer suicides and Bt cotton nightmare unfolding in India. ISIS Report 06/01/10. www.i-sis.org.uk, 17 p. Jacobsen S-E (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:167–177 Jacobsen S-E (2011) The situation for Quinoa and its production in Southern Bolivia: from economic success to environmental disaster. J Agron Crop Sci 197:390–399 Jacobsen S-E, Mujica A, Ortiz R (2003) The global potential for quinoa and other Andean crops. Food Rev Int 19:139–148 Jacobsen S-E, Jensen CR, Liu F (2012) Improving crop production in the arid Mediterranean climate. Field Crops Res 128:34–47 Jain HK (2010) Green revolution: history, impact and future. Studium Press, Housten James C (2011) Global status of commercialized biotech/GM crops: 2011. ISAAA Brief No. 43. ISAAA, Ithaca, NY Juma C (2011) The new harvest—agricultural innovations in Africa. Oxford University Press, Oxford, p 296 Kolady DE, Lesser W (2012) Genetically-engineered crops and their effects on varietal diversity: a case of Bt eggplant in India. Agric Human Values 29:3–15 Lal R (2008) Soils and sustainable agriculture. A review. Agron Sustain Dev 28:57–64 Larigauderie A, Mooney HA (2010) The international year of biodiversity: an opportunity to strengthen the science–policy interface for biodiversity and ecosystem services. Editorial overview. Curr Opin Environ Sustain 2:1–2 Lawson LG, Larsen AS, Pedersen SM, Gylling M (2009) Perceptions of genetically modified crops among Danish farmers. Acta Agr Scand, C-F E 6(2):99–118 Lichtfouse E, Navarrete M, Debaeke P, Souchere V, Alberola C, Menassieu J (2009) Agronomy for sustainable agriculture. A review. Agron Sustain Dev 29:1–6 Nair PKR (2001) Do tropical homegardens elude science, or is it the other way around? Agroforest Syst 53:239–245 NAS [National Academy of Sciences] (2010) The impact of genetically engineered crops on farm sustainability in the United States. National Academies: NW Washington, D.C. www.nap.edu. Padulosi S, Heywood V, Hunter D, Jarvis A (2011) Underutilized species and climate change: current status and outlook. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE (eds) Crop adaptation to climate change, 1st edn. Wiley, New York, pp 507–521 Parry MAJ, Hawkesford MJ (2012) An integrated approach to crop genetic improvement. J Integr Plant Biol 54:250–259 Pingali P, Raney T (2005) From the green revolution to the gene revolution: how will the poor fare? ESA working paper no. 05–09. www.fao.org/es/esa, 17 p. Pinstrup-Andersen P (2010a) Ny viden er farlig for en ideologi, som har spillet fallit. Jord og Viden 4:8–10 Pinstrup-Andersen P (2010b) The advantages of genetic engineering in agriculture include increased food production and reduced hunger—benefits for hungry and malnourished in developing countries outweigh disadvantages. http://www.monsanto.com/biotech-GM/asp/experts.asp?id=PinstrupAndersen#mid. Porter JR, Challinor A, Ewert F, Falloon P, Fischer T, Gregory P, Van Ittersum MK, Olesen JE, Moore KJ, Rosenzweig C, Smith P (2010) Food security: focus on agriculture. Science 328:172 Potocnik J (2010) Green living. Parliament Magazine 31 May 2010, pp 40–41. Pretty JN, Morison JIL, Hine RE (2003) Reducing food poverty by increasing agricultural sustainability in developing countries. Agr Ecosyst Environ 95:217–234 Proulx R, Wirth C, Voigt W, Weigelt A, Roscher C, Attinger S, Baade J, Barnard RL, Buchmann N, Buscot F, Eisenhauer N, Fischer M, Gleixner G, Halle S, Hildebrandt A, Kowalski E, Kuu A, Lange M, Milcu A, Niklaus PA, Oelmann Y, Rosenkranz S, Sabais A, Scherber C, Scherer-Lorenzen M, Scheu S, Schulze E-D, Schumacher J, Schwichtenberg G, Soussana J-F, Temperton VM, Weisser WW, Wilcke W, Schmid B (2010) Diversity promotes temporal stability across levels of ecosystem organization in experimental grasslands. PLoS One 5:e13382 Qaim M (2009) The economics of genetically modified crops. Annu Rev Res Econ 1:665–693 Rudebjer P (2009) Agrobiodiversity in food systems, ecosystems and education systems. In: Rudebjer P, Van Schlagen B, Chakeredza S, Karnau H (eds). Proc. Learning agrobiodiversity: options for universities in Sub-Saharan Africa. 21–23 January 2009. Nairobi, Kenya, pp 28–33 Salinger G (2012) Five agricultural innovations to improve biodiversity. http://blogs.worldwatch.org/nourishingtheplanet/five-agricultural-innovations-to-improve-biodiversity/ Shackleton CM, Pasquini MW, Drescher AW (2009) African indigenous vegetables in urban agriculture. Earthscan, London Schiøler E, Pinstrup-Andersen P (2009) Seeds of contention. Oxford University Press, Oxford, p 164 Scientific American (2009) Do seed companies control GM crop research? Sci Am 13 August 2009. http://www.scientificamerican.com/article.cfm?id=do-seed-companies-control-gm-crop-research Stone GD (2010) The anthropology of genetically modified crops. Annu Rev Anthropol 39:381–400. doi:10.1146/annurev.anthro.012809.105058 Sørensen M (2004) Supercrop—the yam bean. Nat Hist Mag 113(3):38–43 Tari I, Laskay G, Takacs Z, Poor P (2012) Response of Sorghum to abiotic stresses: a review. J Agro Crop Sci. doi:10.1111/jac.12017 Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845 Tirado R, Johnston P (2010) Food security: GM crops threaten biodiversity. Science 328:170–171 Trewavas A (2002) GM food is the best option we have. In: Pence G (ed) The ethics of food, a reader for the twenty-first century. Rowman, Lanham, pp 148–155 Ulukan H (2009) The evolution of cultivated plant species: classical plant breeding versus genetic engineering. Plant Syst Evol 280:133–142 UN (2010) 2015 Millenium development goals. United Nations Summit 20–22 September 2010, New York, High-level Plenary Meeting of the General Assembly. UN Department of Public Information—DPI/2650 G,. September 2010 USDA (2007/2010) National Agricultural Statistics Service (NASS). Agricultural Statistics Board, US Department of Agriculture Acreage. Vandana SV, Barker D, Lockhart C (2011) The GMO emperor has no clothes—a global citizens report on the state of GMOs, synthesis report. Navdanya International. http://image.guardian.co.uk/sys-files/Environment/documents/2011/10/19/GMOEMPEROR.pdf Vidal J (2011a) GM foods: a “biotech revolution”? Guardian.co.uk, 19 October 2011 Vidal J (2011b) GM crops promote superweeds, food insecurity and pesticides, say NGOs. Guardian.co.uk, 19 October 2011 Wang S, Just DR, Pinstrup-Andersen P (2008) Bt-cotton and secondary pests. Int J Biotechnol 10:113–120 Wang ZJ, Lin H, Huang J, Hu R, Rozelle S, Pray C (2009) Bt cotton in China: are secondary insect infestations offsetting the benefits in farmer fields? Agr Sci China 8(1):83–90 Weiner J, Andersen SB, Wille WKM, Griepentrog HW, Olsen JM (2010) Evolutionary agroecology: the potential for cooperative, high density, weed-suppressing cereals. Evol Applic 3:473–475 Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364