Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum
Tóm tắt
Nanophotonic platforms such as metasurfaces, achieving arbitrary phase profiles within ultrathin thickness, emerge as miniaturized, ultracompact and kaleidoscopic optical vortex generators. However, it is often required to segment or interleave independent sub-array metasurfaces to multiplex optical vortices in a single nano-device, which in turn affects the device’s compactness and channel capacity. Here, inspired by phyllotaxis patterns in pine cones and sunflowers, we theoretically prove and experimentally report that multiple optical vortices can be produced in a single compact phyllotaxis nanosieve, both in free space and on a chip, where one meta-atom may contribute to many vortices simultaneously. The time-resolved dynamics of on-chip interference wavefronts between multiple plasmonic vortices was revealed by ultrafast time-resolved photoemission electron microscopy. Our nature-inspired optical vortex generator would facilitate various vortex-related optical applications, including structured wavefront shaping, free-space and plasmonic vortices, and high-capacity information metaphotonics.
Tài liệu tham khảo
J. Sun, J. Zeng, X. Wang, A.N. Cartwright, N.M. Litchinitser, Concealing with structured light. Sci. Rep. 4, 4093 (2014). https://doi.org/10.1038/srep04093
L. Du, A. Yang, A.V. Zayats, X. Yuan, Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys. 15, 650–654 (2019). https://doi.org/10.1038/s41567-019-0487-7
Y. Shen et al., Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light. Sci. Appl. (2019). https://doi.org/10.1038/s41377-019-0194-2
J. Pan et al., Index-tunable structured-light beams from a laser with an intracavity astigmatic mode converter. Phys. Rev. Appl. 14, 044048 (2020). https://doi.org/10.1103/PhysRevApplied.14.044048
F. Lin, X. Qiu, W. Zhang, L. Chen, Seeing infrared optical vortex arrays with a nonlinear spiral phase filter. Opt. Lett. 44, 2298–2301 (2019). https://doi.org/10.1364/OL.44.002298
K.Y. Bliokh, F.J. Rodriguez-Fortuno, F. Nori, A.V. Zayats, Spin-orbit interactions of light. Nat. Photon 9, 796–808 (2015). https://doi.org/10.1038/nphoton.2015.201
B. Wang et al., Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photonics 14, 623–628 (2020). https://doi.org/10.1038/s41566-020-0658-1
Y. Tang et al., Harmonic spin–orbit angular momentum cascade in nonlinear optical crystals. Nat. Photonics 14, 658–662 (2020). https://doi.org/10.1038/s41566-020-0691-0
K.M. Dorney et al., Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin–orbit momentum conservation. Nat. Photonics 13, 123–130 (2019). https://doi.org/10.1038/s41566-018-0304-3
Z. Ji et al., Photocurrent detection of the orbital angular momentum of light. Science 368, 763 (2020). https://doi.org/10.1126/science.aba9192
E. Nagali et al., Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 103, 013601 (2009). https://doi.org/10.1103/PhysRevLett.103.013601
S. Mei et al., Evanescent vortex: optical subwavelength spanner. Appl. Phys. Lett. 109, 191107 (2016). https://doi.org/10.1063/1.4967745
M. Padgett, R. Bowman, Tweezers with a twist. Nat. Photonics 5, 343–348 (2011). https://doi.org/10.1038/nphoton.2011.81
V.G. Shvedov et al., Optical vortex beams for trapping and transport of particles in air. Appl. Phys. A 100, 327–331 (2010). https://doi.org/10.1007/s00339-010-5860-4
Y. Kozawa, D. Matsunaga, S. Sato, Superresolution imaging via superoscillation focusing of a radially polarized beam. Optica 5, 86–92 (2018). https://doi.org/10.1364/OPTICA.5.000086
H. Ren et al., Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol. 15, 948–955 (2020). https://doi.org/10.1038/s41565-020-0768-4
X. Fang, H. Ren, M. Gu, Orbital angular momentum holography for high-security encryption. Nat. Photonics 14, 102–108 (2020). https://doi.org/10.1038/s41566-019-0560-x
H. Ren et al., Metasurface orbital angular momentum holography. Nat. Commun. 10, 2986 (2019). https://doi.org/10.1038/s41467-019-11030-1
L. Rego et al., Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science 364, eaaw9486 (2019)
J.C. Ni et al., Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci. Appl 6, e17011 (2017)
C. Huang et al., Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020)
H. Sroor et al., High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics 14, 498–503 (2020). https://doi.org/10.1038/s41566-020-0623-z
Z. Zhang et al., Tunable topological charge vortex microlaser. Science 368, 760 (2020). https://doi.org/10.1126/science.aba8996
Z. Zhang et al., Ultrafast control of fractional orbital angular momentum of microlaser emissions. Light Sci. Appl. 9, 179 (2020). https://doi.org/10.1038/s41377-020-00415-3
D.Y. Fedyanin, A.V. Krasavin, A.V. Arsenin, A.V. Zayats, Lasing at the nanoscale: coherent emission of surface plasmons by an electrically driven nanolaser. Nanophotonics 9, 3965–3975 (2020). https://doi.org/10.1515/nanoph-2020-0157
W. Li et al., Rapidly tunable orbital angular momentum (OAM) system for higher order Bessel beams integrated in time (HOBBIT). Opt. Express 27, 3920–3934 (2019). https://doi.org/10.1364/OE.27.003920
G. Ruffato, M. Massari, G. Parisi, F. Romanato, Test of mode-division multiplexing and demultiplexing in free-space with diffractive transformation optics. Opt. Express 25, 7859–7868 (2017). https://doi.org/10.1364/OE.25.007859
N.K. Fontaine et al., Laguerre–Gaussian mode sorter. Nature. Communications 10, 1865 (2019). https://doi.org/10.1038/s41467-019-09840-4
E. Maguid et al., Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202 (2016). https://doi.org/10.1126/science.aaf3417
E. Maguid et al., Multifunctional interleaved geometric-phase dielectric metasurfaces. Light Sci. Appl. 6, e17027–e17027 (2017). https://doi.org/10.1038/lsa.2017.27
J. Wang et al., All-dielectric metasurface grating for on-chip multi-channel orbital angular momentum generation and detection. Opt. Express 27, 18794–18802 (2019). https://doi.org/10.1364/OE.27.018794
S. Mei et al., Flat helical nanosieves. Adv. Func. Mater. 26, 5255–5262 (2016). https://doi.org/10.1002/adfm.201601345
D. Veksler et al., Multiple wavefront shaping by metasurface based on mixed random antenna groups. ACS Photonics 2, 661–667 (2015). https://doi.org/10.1021/acsphotonics.5b00113
R.M. Kerber et al., Interaction of an Archimedean spiral structure with orbital angular momentum light. New J. Phys. 20, 095005 (2018). https://doi.org/10.1088/1367-2630/aae105
M.Q. Mehmood et al., Broadband spin-controlled focusing via logarithmic-spiral nanoslits of varying width. Laser Photonics Rev. 9, 674–681 (2015). https://doi.org/10.1002/lpor.201500116
Z. Li et al., Generation of high-order optical vortices with asymmetrical pinhole plates under plane wave illumination. Opt. Express 21, 15755–15764 (2013). https://doi.org/10.1364/OE.21.015755
H. Vogel, A better way to construct the sunflower head. Math. Biosci. 44, 179–189 (1979). https://doi.org/10.1016/0025-5564(79)90080-4
J. Trevino, H. Cao, L. Dal Negro, Circularly symmetric light scattering from nanoplasmonic spirals. Nano Lett. 11, 2008–2016 (2011). https://doi.org/10.1021/nl2003736
K. Niu et al., Linear and nonlinear spin-orbital coupling in golden-angle spiral quasicrystals. Opt. Express 28, 334–344 (2020). https://doi.org/10.1364/OE.373957
M. Mihailescu, Natural quasy-periodic binary structure with focusing property in near field diffraction pattern. Opt. Express 18, 12526–12536 (2010). https://doi.org/10.1364/OE.18.012526
K. Huang et al., Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum. Light Sci. Appl. 7, 17156–17156 (2018). https://doi.org/10.1038/lsa.2017.156
Y. Yang, G. Thirunavukkarasu, M. Babiker, J. Yuan, Orbital-angular-momentum mode selection by rotationally symmetric superposition of chiral states with application to electron vortex beams. Phys. Rev. Lett. 119, 094802 (2017). https://doi.org/10.1103/PhysRevLett.119.094802
K. Huang et al., Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat. Commun. 6, 7059 (2015). https://doi.org/10.1038/ncomms8059
S. Mei et al., On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits. Nanoscale 8, 2227–2233 (2016). https://doi.org/10.1039/C5NR07374J
G. Molina-Terriza, J.P. Torres, L. Torner, Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett. 88, 013601 (2001). https://doi.org/10.1103/PhysRevLett.88.013601
T. Koshy, Fibonacci and Lucas Numbers with Applications (Wiley, Hoboken, 2017), pp. 16–50
W.-Y. Tsai et al., Twisted surface plasmons with spin-controlled gold surfaces. Adv. Opt. Mater. 7, 1801060 (2019). https://doi.org/10.1002/adom.201801060
Y. Yang et al., Deuterogenic plasmonic vortices. Nano Lett. 20, 6774–6779 (2020). https://doi.org/10.1021/acs.nanolett.0c02699
P. Kahl et al., Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons. Plasmonics 9, 1401–1407 (2014). https://doi.org/10.1007/s11468-014-9756-6
G. Spektor et al., Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187 (2017). https://doi.org/10.1126/science.aaj1699
T.J. Davis et al., Subfemtosecond and nanometer plasmon dynamics with photoelectron microscopy: theory and efficient simulations. ACS Photonics 4, 2461–2469 (2017). https://doi.org/10.1021/acsphotonics.7b00676
T.J. Davis et al., Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, eaba6415 (2020). https://doi.org/10.1126/science.aba6415
G. Spektor et al., Mixing the light spin with plasmon orbit by nonlinear light-matter interaction in gold. Phys. Rev. X 9, 021031 (2019). https://doi.org/10.1103/PhysRevX.9.021031
D. Shaohua et al., On-chip trans-dimensional plasmonic router. Nanophotonics (2020). https://doi.org/10.1515/nanoph-2020-0078
P. Kahl et al., Direct observation of surface plasmon polariton propagation and interference by time-resolved imaging in normal-incidence two photon photoemission microscopy. Plasmonics 13, 239–246 (2018)