Nod-Factor structure and functional redundancy of nod genes contribute the broad host range Bradyrhizobium sp. DOA9
Tài liệu tham khảo
Acosta-Jurado, 2020, Sinorhizobium fredii HH103 syrM inactivation affects the expression of a large number of genes, impairs nodulation with soybean and extends the host-range to Lotus japonicus, Environ. Microbiol., 22, 1104, 10.1111/1462-2920.14897
Acosta-Jurado, 2019, Sinorhizobium fredii HH103 nolR and nodD2 mutants gain capacity for infection thread invasion of Lotus japonicus Gifu and Lotus burttii, Environ. Microbiol., 21, 1718, 10.1111/1462-2920.14584
Bensmihen, 2011, Contribution of NFP LysM domains to the recognition of Nod factors during the Medicago truncatula/Sinorhizobium meliloti symbiosis, PLoS One, 6, 10.1371/journal.pone.0026114
Bonaldi, 2010, Large-scale transposon mutagenesis of photosynthetic Bradyrhizobium sp. strain ORS278 reveals new genetic loci putatively important for nod-independent symbiosis with Aeschynomene indica, Mol. Plant-microbe Interact., 23, 760, 10.1094/MPMI-23-6-0760
Broughton, 2000, Keys to symbiotic harmony, J. Bacteriol., 182, 5641, 10.1128/JB.182.20.5641-5652.2000
Bryman, 2011
Corpet, 1998, Multiple sequence alignment with hierarchical clustering, Nucleic Acids Res., 16, 10881
Debellé, 1988, Interference between Rhizobium meliloti and Rhizobium trifolii nodulation genes: genetic basis of R. meliloti dominance, J. Bacteriol., 170, 5718, 10.1128/jb.170.12.5718-5727.1988
Debellé, 1996, The NodA proteins of Rhizobium meliloti and Rhizobium tropici specify the N‐acylation of Nod-Factors by different fatty acids, Mol. Microbiol., 22, 303, 10.1046/j.1365-2958.1996.00069.x
del Cerro, 2019, The non-flavonoid inducible nodA3 and the flavonoid regulated nodA1 genes of Rhizobium tropici CIAT 899 guarantee nod factor production and nodulation of different host legumes, Plant Soil, 440, 185, 10.1007/s11104-019-04073-2
del Cerro, 2015, Opening the "black box" of nodD3, nodD4 and nodD5 genes of Rhizobium tropici strain CIAT 899, BMC Genom., 16, 864, 10.1186/s12864-015-2033-z
Dénarié, 1996, Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis, Annu. Rev. Biochem., 65, 503, 10.1146/annurev.bi.65.070196.002443
Dennis, 1990, Efficient DNA transformation of Bradyrhizobium japonicum by electroporation, Appl. Environ. Microbiol., 833
Downie, 1998, Functions of rhizobial nodulation genes, 387e402
Fuentes-Romero, 2022, The nodD1 gene of Sinorhizobium fredii HH103 restores nodulation capacity on bean in a Rhizobium tropici CIAT 899 nodD1/nodD2 mutant, but the secondary symbiotic regulators nolR, nodD2 or syrM prevent HH103 to nodulate with this legume, Microorganisms, 10, 10.3390/microorganisms10010139
Garcia, 1996, Phenotypic characterization and regulation of the nolA gene of Bradyrhizobium japonicum, Mol. Plant-microbe Interact.: MPMI, 9, 625, 10.1094/MPMI-9-0625
Giraud, 2000, Photosynthesis in Aeschynomene Bradyrhizobium sp. ORS278: genetic analysis and role in symbiosis, Nitrogen Fixation: Mol. Crop Prod., 145
Giraud, 2010, Characterization of bacteriophytochromes from photosynthetic bacteria, 135, 10.1016/S0076-6879(10)71009-0
Gully, 2018, Transcriptome profiles of nod-factor-independent symbiosis in the tropical legume Aeschynomene evenia, Sci. Rep., 8, 10934, 10.1038/s41598-018-29301-0
Hanin, 1997, Sulphation of Rhizobium sp. NGR234 Nod-Factors is dependent on noeE, a new host‐specificity gene, Mol. Microbiol., 24, 1119, 10.1046/j.1365-2958.1997.3981777.x
Hungria, 1993, Effects of a seed color mutation on rhizobial nod-gene-inducing flavonoids and nodulation in common bean, Mol. PlantaMicrobe Interact., 6
Janczarek, 2015, Genetic characterization of the Pss region and the role of PssS in exopolysaccharide production and symbiosis of Rhizobium leguminosarum bv. trifolii with clover, Plant Soil, 396, 257, 10.1007/s11104-015-2567-5
Jeng-Wen, 2000, Proteolysis of the McpA chemoreceptor does not require the Caulobacter major chemotaxis operon, J. Bacteriol., 182, 504
Kelly, 2018, Regulation of Nod factor biosynthesis by alternative NodD proteins at distinct stages of symbiosis provides additional compatibility scrutiny, Environ. Microbiol., 20, 97, 10.1111/1462-2920.14006
Khokhani, 2021, Deciphering the chitin code in plant symbiosis, defense, and microbial networks, Annu. Rev. Microbiol., 75, 583, 10.1146/annurev-micro-051921-114809
Kidaj, 2020, Biological activity of nod-factors, Acta Biochim. Pol., 67, 435
Kumar, 2016, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 33, 1870, 10.1093/molbev/msw054
Lindstrom, 2020, Effectiveness of nitrogen fixation in rhizobia, Microb. Biotechnol., 13, 1314, 10.1111/1751-7915.13517
Long, 1996, Rhizobium symbiosis: nod-Factors in perspective, Plant Cell, 8, 1885
Mergaert, 1997, Molecular mechanisms of Nod-Factor diversity, Mol. Microbiol., 25, 811, 10.1111/j.1365-2958.1997.mmi526.x
Noisangiam, 2012, Genetic diversity, symbiotic evolution, and proposed infection process of Bradyrhizobium strains isolated from root nodules of Aeschynomene americana L. in Thailand, Appl. Environ. Microbiol., 78, 6236, 10.1128/AEM.00897-12
Nouwen, 2016, NodD1 and NodD2 are not required for the symbiotic interaction of Bradyrhizobium ORS285 with nod-factor-independent Aeschynomene legumes, PLoS One, 11, 10.1371/journal.pone.0157888
Okazaki, 2013, Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system, Proc. Natl. Acad. Sci. Unit. States Am., 110, 17131, 10.1073/pnas.1302360110
Okazaki, 2015, Genome analysis of a novel Bradyrhizobium sp. DOA9 carrying a symbiotic plasmid, PLoS One, 10, 10.1371/journal.pone.0117392
Okazaki, 2016, Rhizobium–legume symbiosis in the absence of Nod factors: two possible scenarios with or without the T3SS, ISME J., 10, 64, 10.1038/ismej.2015.103
Oldroyd, 2011, The rules of engagement in the legume-rhizobial symbiosis, Annu. Rev. Genet., 45, 119, 10.1146/annurev-genet-110410-132549
Ormeño-Orrillo, 2012, Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.), BMC Genom., 13, 1, 10.1186/1471-2164-13-735
Price, 1992, Broad‐host‐range Rhizobium species strain NGR234 secretes a family of carbamoylated, and fucosylated, nodulation signals that are O‐acetylated or sulphated, Mol. Microbiol., 6, 3575, 10.1111/j.1365-2958.1992.tb01793.x
Ritsema, 1996, Rhizobium nodulation protein NodA is a host-specific determinant of the transfer of fatty acids in Nod-Factor biosynthesis, Mol. Gen. Genet. MGG, 251, 44
Sambrook, 2002
Senthilkumar, 2019, Diversity in type III secreting systems (T3SSs) in legume-rhizobium symbiosis, 83
Simon, 1983, A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria, Bio/technology, 1, 784, 10.1038/nbt1183-784
Siqueira, 2014, Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean, BMC Genom., 15, 1, 10.1186/1471-2164-15-420
Somasegaran, 1994, Quantifying the growth of rhizobia, 47
Songwattana, 2016
Songwattana, 2017, Type 3 secretion system (T3SS) of Bradyrhizobium sp. DOA9 and its roles in legume symbiosis and rice endophytic association, Front. Microbiol., 8, 1810, 10.3389/fmicb.2017.01810
Songwattana, 2019, Symbiotic properties of a chimeric Nod-independent photosynthetic Bradyrhizobium strain obtained by conjugative transfer of a symbiotic plasmid, Environ. Microbiol., 10.1111/1462-2920.14650
Sun, 2015, Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice, Plant Cell, 27, 823, 10.1105/tpc.114.131326
Teamtisong, 2014, Divergent nod-containing Bradyrhizobium sp. DOA9 with a megaplasmid and its host range, Microb. Environ., 29, 370, 10.1264/jsme2.ME14065
Tikhonovich, 2007, Beneficial plant–microbe interactions, 365
Van Rhijn, 1993, Multiple copies of nodD in Rhizobium tropici CIAT899 and BR816, J. Bacteriol., 175, 438, 10.1128/jb.175.2.438-447.1993
Walker, 2020, Determinants of host range specificity in legume-rhizobia symbiosis, Front. Microbiol., 11, 585749, 10.3389/fmicb.2020.585749
Wang, 2018, Conserved composition of nod factors and exopolysaccharides produced by different phylogenetic lineage Sinorhizobium strains nodulating soybean, Front. Microbiol., 2852, 10.3389/fmicb.2018.02852
Wongdee, 2016, nifDK clusters located on the chromosome and megaplasmid of Bradyrhizobium sp. strain DOA9 contribute differently to nitrogenase activity during symbiosis and free-living growth, Mol. Plant Microbe Interact., 29, 767, 10.1094/MPMI-07-16-0140-R
Xie, 2012, Legume pectate lyase required for root infection by rhizobia, Proc. Natl. Acad. Sci. U. S. A., 109, 633, 10.1073/pnas.1113992109