Friction Drag Reduction of External Flows with Bubble and Gas Injection

Annual Review of Fluid Mechanics - Tập 42 Số 1 - Trang 183-203 - 2010
Steven L. Ceccio1
1Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2133;

Tóm tắt

The lubrication of external liquid flow with a bubbly mixture or gas layer has been the goal of engineers for many years, and this article presents the underlying principles and recent advances of this technology. It reviews the use of partial and supercavities for drag reduction of axisymmetric objects moving within a liquid. Partial cavity flows can also be used to reduce the friction drag on the nominally two-dimensional portions of a horizontal surface, and the basic flow features of two-dimensional cavities are presented. Injection of gas can lead to the creation of a bubbly mixture near the flow surface that can significantly modify the flow within the turbulent boundary layer, and there have been significant advances in the understanding of the underlying physical process of drag reduction. Moreover, with sufficient gas flux, the bubbles flowing beneath a solid surface can coalesce to form a thin drag-reducing air layer. The current applications of these techniques to underwater vehicles and surface ships are discussed.

Từ khóa


Tài liệu tham khảo

10.1146/annurev.fl.05.010173.001113

Amromin E, 2003, Mar. Technol., 40, 181

10.1115/1.2234787

10.1038/scientificamerican0501-70

10.1007/11664550_2

10.1115/1.3448090

Bogdevich VG, 1976, Inv. Boundary Layer Control, 49

10.1017/S0022112069000449

Brennen CE, 1995, Cavitation and Bubble Dynamics, 10.1093/oso/9780195094091.001.0001

Butuzov AA, 1967, Fluid Dyn., 3, 56

Buyvol VN, 1980, Slender Cavities in Flows with Perturbations

10.1017/S0022112001005420

Campbell IJ, 1958, Proc. Second Symp. Naval Hydrodyn. Washington, DC, 467

10.1063/1.857837

Cox RN, 1955, Proc. Symp. Cavitation Hydrodyn., 121

10.1115/1.2823536

10.1115/1.2823537

10.1023/A:1000763130780

10.1063/1.865786

Deutsch S, Money M, Fontaine A, Petrie H. 2006. Microbubble drag reduction in rough walled turbulent boundary layers.Proc. 4th ASME/JSME Joint Fluids Eng. Conf., Hawaii, FEDSM2003-45647, pp. 1–9

10.1177/1077546303009007004

10.1017/S0022112008003029

Epshteyn LA, 1961, Tr. TsAGI, 824, 45

10.1088/0957-0233/16/9/001

10.1017/S0022112004007943

10.1017/S0022112005006440

10.1007/s007730070009

10.1090/S0002-9904-1956-10017-7

10.1007/BF02390723

10.1115/1.2969444

10.1007/BF02492919

10.1299/jsmefed.2003.1

Kawanami Y, Kato H, Yamaguchi H. 1998. Three-dimensional characteristics of the cavities formed on a two-dimensional hydrofoil.Proc. Third Int. Symp. Cavitation, Grenoble, France, pp. 191–96

Kinnas SA, 2001, Proc. RTO AVT Lect. Ser. Supercavitating Flows, 21.1

Kirschner IN, Arzoumanian SH. 2008. Implication and extension of Paryshev's model of cavity dynamics.Proc. Int. Conf. Innov. Approaches Further Increase Speed Fast Mar. Veh., Mov. Above, Under Water Surf., SuperFAST’2008,Saint-Petersburg, Russia, pp. 1–32

Kirschner IN, 2001, Proc. RTO AVT Lect. Ser. Supercavitating Flows, 9.1

10.1177/107754602023818

Knapp RT, 1970, Cavitation

Kodama Y, Hori T, Kawashima MM, Hinatsu M. 2006. A full scale microbubble experiment using a cement carrier.Proc. Eur. Drag Reduct. Flow Control Meet., Ischia, Italy, POL1_2

10.1016/S0142-727X(00)00048-5

Kopriva JE, 2007, J. Ship Res., 51, 313, 10.5957/jsr.2007.51.4.313

10.1115/1.2842147

10.1016/S0045-7930(99)00039-0

10.1115/1.2375124

Kunz RF, 2001, Proc. RTO AVT Lect. Ser. Supercavitating Flows, 13.1

10.1017/S0022112000002925

10.1017/S0022112000002937

10.1016/0029-8018(96)00005-4

Lay KA, 2009, J. Ship Res.

10.1103/PhysRevE.73.036308

10.1063/1.864592

10.1115/1.1487360

10.1063/1.2033547

10.1063/1.864620

10.1017/S0022112085002075

10.1115/1.3242495

Maki KJ, 2008, J. Ship Res., 52, 291, 10.5957/jsr.2008.52.4.291

10.1016/S0029-8018(02)00103-8

10.1016/j.oceaneng.2006.08.015

May A. 1975. Water entry and the cavity-running behavior of missiles.SEAHAC Tech. Rep. 75-2, Nav. Surf. Weapons Cent., White Oak Lab., Silver Spring, Maryland

Meng JCS, Uhlman JS. 1998. Microbubble formation and splitting in a turbulent boundary layer for turbulence reduction.Proc. Int. Symp. Seawater Drag Reduct., Newport, Rhode Island, pp. 341–55

10.1115/1.3119751

10.1115/1.3243122

10.1007/s007730200015

10.1016/j.ijmultiphaseflow.2006.08.008

10.1007/s00348-006-0142-9

10.1063/1.2884471

10.2534/jjasnaoe1968.2002.15

10.1063/1.866810

Paryshev EV. 1978. A system of nonlinear differential equations with a time delay describing the dynamics of nonstationary axially symmetric cavities.Tr. TsAGINo. 1907 (In Russian)

10.1017/CBO9780511840531

Reed JC, 1994, J. Ship Res., 38, 133, 10.5957/jsr.1994.38.2.133

Reichardt H. 1946. The laws of cavitation bubbles at axially symmetric bodies in a flow.Rep. Trans. 766, Minist. Aircr. Prod., Britain

10.1017/S0022112006008688

Savchenko YN, 2001, Proc. RTO AVT Lect. Ser. Supercavitating Flows, 17.1

Schauer TJ, 2003, An experimental study of a ventilated supercavitating vehicle

Schmidt GH, 1981, J. Ship Res., 25, 236, 10.5957/jsr.1981.25.4.236

Semenenko VN, 2001, Proc. RTO AVT Lect. Ser. Supercavitating Flows, 11.1

Semenenko VN, 2001, Proc. RTO AVT Lect. Ser. Supercavitating Flows, 12.1

10.1006/jcph.2002.6992

10.1002/fld.692

10.1002/fld.693

10.1007/s00348-006-0169-y

Silberman E, 1961, J. Ship Res., 5, 13, 10.5957/jsr.1961.5.2.13

Song CS, Qin Q. 2001. Numerical simulations of unsteady cavitating flows.Proc. Fourth Int. Symp. Cavitation, Pasadena, CA, pp. 1–8

Stinebring DR, Billet ML, Holl JW. 1985. An experimental study of cavity cycling for ventilated and vaporous cavities.Proc. ASME Int. Symp. Jets Cavities, Miami Beach, FL, pp. 1–4

10.1017/S0022112008001183

Takahashi T, 2003, J. Kansai Soc. Nav. Archit. Jpn., 239, 11

Takahashi T, Kakugawa A, Nagaya S, Yanagihara T, Kodama Y. 2001. Mechanisms and scale effects of skin friction reduction by microbubbles.Proc. Second Symp. Smart Control Turbul., Univ. Tokyo, Japan, pp. 1–9

Tulin MP, 1955, NPL Symp. Cavitation Hydrodyn, 16.1

Tulin MP, 1964, J. Ship Res., 7, 16, 10.5957/jsr.1964.8.1.16

Uhlman JS, 1987, J. Ship Res., 31, 107, 10.5957/jsr.1987.31.2.107

Uhlman JS, 1989, J. Ship Res., 33, 16, 10.5957/jsr.1989.33.1.16

Uhlman JS., 2006, J. Ship Res., 50, 259, 10.5957/jsr.2006.50.3.259

10.1103/PhysRevLett.94.044501

10.1177/1077546307070226

10.1115/1.1852473

10.1006/jcph.2002.7062

10.1016/j.apm.2005.11.019

10.1007/s00348-004-0850-y

10.1017/S0022112066001320

10.1002/fld.1047

10.1146/annurev.fl.04.010172.001331

10.1017/S0022112002001659

Young YL, 2003, J. Ship Res., 47, 48, 10.5957/jsr.2003.47.1.48

Young YL, 2004, J. Ship Res., 48, 288, 10.5957/jsr.2004.48.4.288

10.1115/1.2819498