Laser writing of the restacked titanium carbide MXene for high performance supercapacitors
Tài liệu tham khảo
Simon, 2008, Materials for electrochemical capacitors, Nat. Mater., 7, 845, 10.1038/nmat2297
Liu, 2020, Addressing the Achilles’ heel of pseudocapacitive materials: long-term stability, InfoMat, 1
Li, 2020, An ultrafast conducting Polymer@MXene positive electrode with high volumetric capacitance for advanced asymmetric supercapacitors, Small, 16, 1906851, 10.1002/smll.201906851
Liu, 2020, Oxygen-deficient homo-interface toward exciting boost of pseudocapacitance, Adv. Funct. Mater., 30, 1909546, 10.1002/adfm.201909546
Li, 2020, Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage, Nature Energy, 5, 160, 10.1038/s41560-020-0560-6
Ates, 2019, Supercapacitor performances of RuO2/MWCNT, RuO2/Fullerene nanocomposites, Energy Storage, 1, e86, 10.1002/est2.86
Zhao, 2019, Phosphate ion-modified RuO2/Ti3C2 composite as a high-performance supercapacitor, Material, Nanomaterials, 9, 377, 10.3390/nano9030377
Zhang, 2018, Research progress in MnO2 -carbon based supercapacitor electrode materials, Small, 24, 1702883, 10.1002/smll.201702883
Heather, 2018, Andreas, bringing real-world energy-storage Research into a second-year physical-chemistry lab using a MnO2-based supercapacitor, J. Chem. Educ., 95, 2028, 10.1021/acs.jchemed.8b00454
Ge, 2016, Exploring electrolyte preference of vanadium nitride supercapacitor electrodes, Mater. Res. Bull., 76, 37, 10.1016/j.materresbull.2015.12.006
Liu, 2018, In situ self-sacrificed template synthesis of vanadium nitride/nitrogen-doped graphene nanocomposites for electrochemical capacitors, Nanoscale, 10, 5246, 10.1039/C7NR08985F
Zhao, 2020, Conducting polymer composites for unconventional solid-state supercapacitors, J. Mater. Chem. A., 8, 4677, 10.1039/C9TA13432H
Li, 2020, Research progress on applications of polyaniline (PANI) for electrochemical energy storage and conversion, Materials, 13, 548, 10.3390/ma13030548
Ponrouch, 2013, Ultra high capacitance values of Pt@RuO2 core–shell nanotubular electrodes for microsupercapacitor applications, J. Power Sources, 221, 228, 10.1016/j.jpowsour.2012.08.033
Zhai, 2018, Nano-RuO2-Decorated holey graphene composite fibers for micro-supercapacitors with ultrahigh energy density, Small, 14, 1800582, 10.1002/smll.201800582
Annamalai, 2019, Nanoporous ruthenium and manganese oxide nanoparticles/reduced graphene oxide for high-energy symmetric supercapacitors, Carbon, 144, 185, 10.1016/j.carbon.2018.11.073
Gueon, 2017, MnO2 nanoflake-shelled carbon nanotube particles for high-performance supercapacitors, ACS Sustain. Chem. Eng., 5, 2445, 10.1021/acssuschemeng.6b02803
2019
Gao, 2017, 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction, ACS Catal., 7, 494, 10.1021/acscatal.6b02754
Ghidiu, 2014, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance, Nature, 516, 78, 10.1038/nature13970
Shahzad, 2016, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science, 353, 1137, 10.1126/science.aag2421
Er, 2014, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries, ACS Appl. Mater. Interfaces, 6, 11173, 10.1021/am501144q
Xiao, 2019, Scalable synthesis of ultrathin Mn3N2 exhibiting room-temperature antiferromagnetism, Adv. Funct. Mater., 29, 1809001, 10.1002/adfm.201809001
Xiao, 2018, Topochemical synthesis of 2D materials, Chem. Soc. Rev., 47, 8744, 10.1039/C8CS00649K
Xiao, 2019, Two-dimensional arrays of transition metal nitride nanocrystals, Adv. Mater., 31, 1902393, 10.1002/adma.201902393
Zhang, 2020, 3D crumbled MXene for high-performance supercapacitors, Chin. Chem. Lett.
Zhu, 2020, Modifications of MXene layers for supercapacitors, Nano Energy, 73, 104734, 10.1016/j.nanoen.2020.104734
Lukatskaya, 2013, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 341, 1502, 10.1126/science.1241488
Naguib, 2011, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23, 4248, 10.1002/adma.201102306
Zhang, 2020, Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity, Adv. Mater., 2001093, 10.1002/adma.202001093
Lukatskaya, 2017, Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides, Nature Energy, 2, 17105, 10.1038/nenergy.2017.105
Tang, 2019, Tuning the electrochemical performance of titanium carbide MXene by controllable in situ anodic oxidation, Angew. Chem. Int. Ed., 58, 17849, 10.1002/anie.201911604
Ambade, 2018, 2D Ti3C2 MXene/WO3 hybrid architectures for high-rate supercapacitors, Advanced Materials Interfaces, 5, 1801361, 10.1002/admi.201801361
Zhang, 2018, MXene aerogel scaffolds for high-rate lithium metal anodes, Angew. Chem., 130, 15248, 10.1002/ange.201808714
Yan, 2017, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance, Adv. Funct. Mater., 27, 1701264, 10.1002/adfm.201701264
Zhao, 2015, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance, Adv. Mater., 27, 339, 10.1002/adma.201404140
Kayali, 2018, Controlling the dimensions of 2D MXenes for ultrahigh-rate pseudocapacitive energy storage, ACS Appl. Mater. Interfaces, 10, 25949, 10.1021/acsami.8b07397
Ren, 2016, Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage, ChemElectroChem, 3, 689, 10.1002/celc.201600059
El-Kady, 2012, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors, Science, 335, 1326, 10.1126/science.1216744
Agresti, 2019, Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells, Nat. Mater., 18, 1228, 10.1038/s41563-019-0478-1
Lukatskaya, 2015, Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy, Advanced Energy Materials, 5, 1500589, 10.1002/aenm.201500589
Delekta, 2019, Fully inkjet printed ultrathin microsupercapacitors based on graphene electrodes and a nano-graphene oxide electrolyte, Nanoscale, 11, 10172, 10.1039/C9NR01427F
Yue, 2018, Highly self-healable 3D microsupercapacitor with MXene–graphene composite aerogel, ACS Nano, 12, 4224, 10.1021/acsnano.7b07528
John, 2018, Stamping of flexible, coplanar micro-supercapacitors using MXene inks, Adv. Funct. Mater., 28, 1705506, 10.1002/adfm.201705506
Huang, 2020, A Facile, High-Yield, and Freeze-and-Thaw-Assisted Approach to Fabricate MXene with Plentiful Wrinkles and Its Application in On-Chip Micro-Supercapacitors, Adv. Funct. Mater., 30, 1910048, 10.1002/adfm.201910048
Peng, 2016, All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage, Energy Environ. Sci., 9, 2847, 10.1039/C6EE01717G