Laser writing of the restacked titanium carbide MXene for high performance supercapacitors

Energy Storage Materials - Tập 32 - Trang 418-424 - 2020
Jun Tang1,2, Wendi Yi1, Xiongwei Zhong1, Chuanfang (John) Zhang3, Xu Xiao4, Feng Pan2, Baomin Xu1
1Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, PR China
2School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, Guangdong Province, 518055, PR China
3Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), ETH Domain, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
4Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA, 19104, USA

Tài liệu tham khảo

Simon, 2008, Materials for electrochemical capacitors, Nat. Mater., 7, 845, 10.1038/nmat2297 Liu, 2020, Addressing the Achilles’ heel of pseudocapacitive materials: long-term stability, InfoMat, 1 Li, 2020, An ultrafast conducting Polymer@MXene positive electrode with high volumetric capacitance for advanced asymmetric supercapacitors, Small, 16, 1906851, 10.1002/smll.201906851 Liu, 2020, Oxygen-deficient homo-interface toward exciting boost of pseudocapacitance, Adv. Funct. Mater., 30, 1909546, 10.1002/adfm.201909546 Li, 2020, Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage, Nature Energy, 5, 160, 10.1038/s41560-020-0560-6 Ates, 2019, Supercapacitor performances of RuO2/MWCNT, RuO2/Fullerene nanocomposites, Energy Storage, 1, e86, 10.1002/est2.86 Zhao, 2019, Phosphate ion-modified RuO2/Ti3C2 composite as a high-performance supercapacitor, Material, Nanomaterials, 9, 377, 10.3390/nano9030377 Zhang, 2018, Research progress in MnO2 -carbon based supercapacitor electrode materials, Small, 24, 1702883, 10.1002/smll.201702883 Heather, 2018, Andreas, bringing real-world energy-storage Research into a second-year physical-chemistry lab using a MnO2-based supercapacitor, J. Chem. Educ., 95, 2028, 10.1021/acs.jchemed.8b00454 Ge, 2016, Exploring electrolyte preference of vanadium nitride supercapacitor electrodes, Mater. Res. Bull., 76, 37, 10.1016/j.materresbull.2015.12.006 Liu, 2018, In situ self-sacrificed template synthesis of vanadium nitride/nitrogen-doped graphene nanocomposites for electrochemical capacitors, Nanoscale, 10, 5246, 10.1039/C7NR08985F Zhao, 2020, Conducting polymer composites for unconventional solid-state supercapacitors, J. Mater. Chem. A., 8, 4677, 10.1039/C9TA13432H Li, 2020, Research progress on applications of polyaniline (PANI) for electrochemical energy storage and conversion, Materials, 13, 548, 10.3390/ma13030548 Ponrouch, 2013, Ultra high capacitance values of Pt@RuO2 core–shell nanotubular electrodes for microsupercapacitor applications, J. Power Sources, 221, 228, 10.1016/j.jpowsour.2012.08.033 Zhai, 2018, Nano-RuO2-Decorated holey graphene composite fibers for micro-supercapacitors with ultrahigh energy density, Small, 14, 1800582, 10.1002/smll.201800582 Annamalai, 2019, Nanoporous ruthenium and manganese oxide nanoparticles/reduced graphene oxide for high-energy symmetric supercapacitors, Carbon, 144, 185, 10.1016/j.carbon.2018.11.073 Gueon, 2017, MnO2 nanoflake-shelled carbon nanotube particles for high-performance supercapacitors, ACS Sustain. Chem. Eng., 5, 2445, 10.1021/acssuschemeng.6b02803 2019 Gao, 2017, 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction, ACS Catal., 7, 494, 10.1021/acscatal.6b02754 Ghidiu, 2014, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance, Nature, 516, 78, 10.1038/nature13970 Shahzad, 2016, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science, 353, 1137, 10.1126/science.aag2421 Er, 2014, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries, ACS Appl. Mater. Interfaces, 6, 11173, 10.1021/am501144q Xiao, 2019, Scalable synthesis of ultrathin Mn3N2 exhibiting room-temperature antiferromagnetism, Adv. Funct. Mater., 29, 1809001, 10.1002/adfm.201809001 Xiao, 2018, Topochemical synthesis of 2D materials, Chem. Soc. Rev., 47, 8744, 10.1039/C8CS00649K Xiao, 2019, Two-dimensional arrays of transition metal nitride nanocrystals, Adv. Mater., 31, 1902393, 10.1002/adma.201902393 Zhang, 2020, 3D crumbled MXene for high-performance supercapacitors, Chin. Chem. Lett. Zhu, 2020, Modifications of MXene layers for supercapacitors, Nano Energy, 73, 104734, 10.1016/j.nanoen.2020.104734 Lukatskaya, 2013, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 341, 1502, 10.1126/science.1241488 Naguib, 2011, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23, 4248, 10.1002/adma.201102306 Zhang, 2020, Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity, Adv. Mater., 2001093, 10.1002/adma.202001093 Lukatskaya, 2017, Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides, Nature Energy, 2, 17105, 10.1038/nenergy.2017.105 Tang, 2019, Tuning the electrochemical performance of titanium carbide MXene by controllable in situ anodic oxidation, Angew. Chem. Int. Ed., 58, 17849, 10.1002/anie.201911604 Ambade, 2018, 2D Ti3C2 MXene/WO3 hybrid architectures for high-rate supercapacitors, Advanced Materials Interfaces, 5, 1801361, 10.1002/admi.201801361 Zhang, 2018, MXene aerogel scaffolds for high-rate lithium metal anodes, Angew. Chem., 130, 15248, 10.1002/ange.201808714 Yan, 2017, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance, Adv. Funct. Mater., 27, 1701264, 10.1002/adfm.201701264 Zhao, 2015, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance, Adv. Mater., 27, 339, 10.1002/adma.201404140 Kayali, 2018, Controlling the dimensions of 2D MXenes for ultrahigh-rate pseudocapacitive energy storage, ACS Appl. Mater. Interfaces, 10, 25949, 10.1021/acsami.8b07397 Ren, 2016, Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage, ChemElectroChem, 3, 689, 10.1002/celc.201600059 El-Kady, 2012, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors, Science, 335, 1326, 10.1126/science.1216744 Agresti, 2019, Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells, Nat. Mater., 18, 1228, 10.1038/s41563-019-0478-1 Lukatskaya, 2015, Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy, Advanced Energy Materials, 5, 1500589, 10.1002/aenm.201500589 Delekta, 2019, Fully inkjet printed ultrathin microsupercapacitors based on graphene electrodes and a nano-graphene oxide electrolyte, Nanoscale, 11, 10172, 10.1039/C9NR01427F Yue, 2018, Highly self-healable 3D microsupercapacitor with MXene–graphene composite aerogel, ACS Nano, 12, 4224, 10.1021/acsnano.7b07528 John, 2018, Stamping of flexible, coplanar micro-supercapacitors using MXene inks, Adv. Funct. Mater., 28, 1705506, 10.1002/adfm.201705506 Huang, 2020, A Facile, High-Yield, and Freeze-and-Thaw-Assisted Approach to Fabricate MXene with Plentiful Wrinkles and Its Application in On-Chip Micro-Supercapacitors, Adv. Funct. Mater., 30, 1910048, 10.1002/adfm.201910048 Peng, 2016, All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage, Energy Environ. Sci., 9, 2847, 10.1039/C6EE01717G