Tungsten oxide and carbide composite synthesized by hot filament chemical deposition as electrodes in aqueous-based electrochemical capacitors

Journal of Energy Storage - Tập 26 - Trang 100905 - 2019
Davi M. Soares1, Rafael Vicentini1, Alfredo C. Peterlevitz1, Cristiane B. Rodella2, Leonardo M. da Silva3, Hudson Zanin1
1Advanced Energy Storage Division, Center for Innovation on New Energies, Carbon Sci-Tech Labs, School of Electrical and Computer Engineering, University of Campinas, Av Albert Einstein 400, Campinas, SP 13083-852, Brazil
2Brazilian Synchrotron Light Laboratory (LNLS/Brazilian Center of Energy and Materials (CNPEM), C.P. 6192, Campinas, SP 13083-970, Brazil
3Institute of Science and Technology e Faculty of Chemical Engineering, Federal University of Jequitinhonha and Mucuri’s Valley, Highway MGT 367, km 583, 5000, Alto da Jacuba, 39.100-000, Diamantina, MG, Brazil

Tài liệu tham khảo

Hester, 1960, Tungsten carbide, Ind. Eng. Chem., 52, 94, 10.1021/ie50602a018 Liu, 2016, Synthesis and characterization of tungsten carbide and application to electrocatalytic hydrogen evolution, RSC Adv., 6, 76307, 10.1039/C6RA12545J Li, 2018, Mof-derived metal oxide composites for advanced electrochemical energy storage, Small, 14, 1704435, 10.1002/smll.201704435 Zheng, 2018, Tungsten-based materials for lithium-ion batteries, Adv. Funct. Mater., 28, 1707500, 10.1002/adfm.201707500 Yang, 2019, Applications of metal–organic-framework-derived carbon materials, Adv. Mater., 31, 1804740, 10.1002/adma.201804740 Chen, 2013, Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts, Chem. Commun., 49, 8896, 10.1039/c3cc44076a Niu, 2018, Old materials with new properties ii: the metal carbides, Nano Today, 18, 12, 10.1016/j.nantod.2017.10.001 Shi, 2017, Crystalline tantalum carbide and ditungsten carbide formation via hot wire chemical vapor deposition using the precursor of 1-methylsilacyclobutane, Surf. Coat. Technol., 326, 103, 10.1016/j.surfcoat.2017.07.047 Soares, 2018 Baserga, 2007, Nanostructured tungsten oxide with controlled properties: synthesis and Raman characterization, Thin Solid Films, 515, 6465, 10.1016/j.tsf.2006.11.067 Kuzmin, 1998, X-ray diffraction, extended x-ray absorption fine structure and raman spectroscopy studies of WO3 powders and (1- x) WO 3- yx REO2 mixtures, J. Appl. Phys., 84, 5515, 10.1063/1.368596 Chu, 2017, Wo3 nanoflower coated with graphene nanosheet: synergetic energy storage composite electrode for supercapacitor application, J. Alloys Compd., 702, 568, 10.1016/j.jallcom.2017.01.226 Cai, 2014, Graphene nanosheets-tungsten oxides composite for supercapacitor electrode, Ceram. Int., 40, 4109, 10.1016/j.ceramint.2013.08.065 Chang, 2011, Microwave-assisted hydrothermal synthesis of crystalline WO3–WO3· 0.5 H2O mixtures for pseudocapacitors of the asymmetric type, J. Power Sources, 196, 2387, 10.1016/j.jpowsour.2010.09.078 Hai, 2017, Nano-thickness dependence of supercapacitor performance of the ald-fabricated two-dimensional WO3, Electrochim. Acta, 246, 625, 10.1016/j.electacta.2017.06.095 Wong, 2017, Hydrothermal preparation of reduced graphene oxide/tungsten trioxide nanocomposites with enhanced electrochemical performance, J. Mater. Sci., 28, 14554 Shinde, 2015, Wet chemical synthesis of WO3 thin films for supercapacitor application, Korean J. Chem. Eng., 32, 974, 10.1007/s11814-014-0323-9 Shinde, 2018, Single-step hydrothermal synthesis of WO3-MnO2 composite as an active material for all-solid-state flexible asymmetric supercapacitor, Int. J. Hydrog. Energy, 43, 2869, 10.1016/j.ijhydene.2017.12.093 Huang, 2009, Capacitive performances of amorphous tungsten oxide prepared by microwave irradiation, Scr. Mater., 61, 985, 10.1016/j.scriptamat.2009.08.009 Dubal, 2018, Towards flexible solid-state supercapacitors for smart and wearable electronics, Chem. Soc. Rev., 47, 2065, 10.1039/C7CS00505A Augustyn, 2014, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7, 1597, 10.1039/c3ee44164d Lu, 2013 Sarkar, 2018, Hexagonal WO3 nanorods as ambipolar electrode material in asymmetric WO3//WO3/MnO2 supercapacitor, J. Electrochem. Soc., 165, A2108, 10.1149/2.0451810jes Shao, 2018, Hierarchical micro/nanostructured WO3 with structural water for high-performance pseudocapacitors, J. Alloys Compd., 765, 489, 10.1016/j.jallcom.2018.06.192 Gong, 2018, Preparation and supercapacitive property of molybdenum disulfide (MoS2) nanoflake arrays-tungsten trioxide (Wo3) nanorod arrays composite heterojunction: a synergistic effect of one-dimensional and two-dimensional nanomaterials, Electrochim. Acta, 263, 409, 10.1016/j.electacta.2018.01.072 Dubal, 2019, Tungsten nitride nanodots embedded phosphorous modified carbon fabric as flexible and robust electrode for asymmetric pseudocapacitor, Small, 15, 1804104, 10.1002/smll.201804104 Sun, 2015, High surface area tunnels in hexagonal WO3, Nano Lett., 15, 4834, 10.1021/acs.nanolett.5b02013 Yao, 2017, Carbon-encapsulated tungsten oxide nanowires as a stable and high-rate anode material for flexible asymmetric supercapacitors, J. Mater. Chem. A, 5, 56, 10.1039/C6TA08274B Zhao, 2016, Two-dimensional titanium carbide/RGO composite for high-performance supercapacitors, ACS Appl. Mater. Interfaces, 8, 15661, 10.1021/acsami.6b04767 Shan, 2018, Two-dimensional vanadium carbide (V2C) mxene as electrode for supercapacitors with aqueous electrolytes, Electrochem. Commun., 96, 103, 10.1016/j.elecom.2018.10.012 Tallo, 2011, Nanostructured carbide-derived carbon synthesized by chlorination of tungsten carbide, Carbon, 49, 4427, 10.1016/j.carbon.2011.06.033 Eskusson, 2011, Physical and electrochemical characteristics of supercapacitors based on carbide derived carbon electrodes in aqueous electrolytes, J. Power Sources, 196, 4109, 10.1016/j.jpowsour.2010.10.100 Wu, 2011, Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells, Angew. Chem. Int. Ed., 50, 3520, 10.1002/anie.201006635 Tian, 2019, Ditungsten carbide nanoparticles embedded in electrospun carbon nanofiber membranes as flexible and high-performance supercapacitor electrodes, Compos. Commun., 12, 21, 10.1016/j.coco.2018.12.003 Erik, 1999 Sittinger, 2017, Optical grade SiO2 films prepared by hwcvd, Surf. Coat. Technol. Pflug, 2015, Modeling of gas flow and deposition profile in HWCVDprocesses, Thin Solid Films, 595, 266, 10.1016/j.tsf.2015.08.004 Chaudhari, 2011, Hot wire chemical vapour deposition (HWCVD) of boron carbide thin films from ortho-carborane for neutron detection application, Thin Solid Films, 519, 4561, 10.1016/j.tsf.2011.01.295 Umemoto, 2008, Coating techniques of metal chambers for remote catalytic chemical vapor deposition applications, J. Vacuum Sci. Technol. A, 26, 309, 10.1116/1.2844313 Liang, 2003, The synthesis of nanostructured W2C on ultrahigh surface area carbon materials via carbothermal hydrogen reduction, Nanotechnology, 14, 955, 10.1088/0957-4484/14/9/303 Fan, 2015, Wc nanocrystals grown on vertically aligned carbon nanotubes: an efficient and stable electrocatalyst for hydrogen evolution reaction, ACS Nano, 9, 5125, 10.1021/acsnano.5b00425 Teo, 2016, High surface area activated carbon from rice husk as a high performance supercapacitor electrode, Electrochim. Acta, 192, 110, 10.1016/j.electacta.2016.01.140 Gotić, 2000, Synthesis of tungsten trioxide hydrates and their structural properties, Mater. Sci. Eng., 77, 193, 10.1016/S0921-5107(00)00488-8 Liu, 2017, Noble-metal-free tungsten oxide/carbon (WOx/C) hybrid manowires for highly efficient hydrogen evolution, Nanotechnology, 28, 445403, 10.1088/1361-6528/aa8613 Novoselova, 2018, Electrochemical synthesis of tungsten carbide in molten salts, its properties and applications, ECS Trans., 86, 81, 10.1149/08614.0081ecst Gabrusenoks, 2001, Infrared and raman spectroscopy of WO3 and CdWO4, Electrochim. Acta, 46, 2229, 10.1016/S0013-4686(01)00364-4 Díaz-Reyes, 2008, Obtaining of films of tungsten trioxide (WO3) by resistive heating of a tungsten filament, Superf. Vacío, 21, 12 Kubo, 1998, Deposition temperature dependence of optical gap and coloration efficiency spectrum in electrochromic tungsten oxide films, J. Electrochem. Soc., 145, 1729, 10.1149/1.1838548 Tägtström, 1999, Chemical vapour deposition of epitaxial WO3 films, Thin Solid Films, 352, 107, 10.1016/S0040-6090(99)00379-X Saito, 2011, Raman spectroscopy of graphene and carbon nanotubes, Adv. Phys., 60, 413, 10.1080/00018732.2011.582251 Pimenta, 2007, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys., 9, 1276, 10.1039/B613962K Kurlov, 2007, Neutron and x-ray diffraction study and symmetry analysis of phase transformations in lower tungsten carbide W2c, Physical Review B, 76, 174115, 10.1103/PhysRevB.76.174115 Parrish, 1960, Results of the IUCR precision lattice-parameter project, Acta Crystallogr., 13, 838, 10.1107/S0365110X60002041 Woodward, 1995, Structure refinement of triclinic tungsten trioxide, J. Phys. Chem. Solids, 56, 1305, 10.1016/0022-3697(95)00063-1 Colton, 1976, Electronic structure to tungsten and some of its borides, carbides, nitrides, and oxides by x-ray electron spectroscopy, Inorg. Chem., 15, 236, 10.1021/ic50155a049 Katrib, 1995, The multi-surface structure and catalytic properties of partially reduced WO3, WO2 and WC+ O2 or W+ O2 as characterized by XPS, J. Electron Spectrosc. Relat. Phenom., 76, 195, 10.1016/0368-2048(95)02451-4 Morimitsu, 2013, Deposition and computational analysis of WC thin films grown by PAPVD, Rev. Mexicana Física, 59, 106 He, 2016, Investigation of post-deposition annealing effects on microstructure, mechanical and tribological properties of WC/AC nanocomposite coatings, Tribol. Lett., 63, 14, 10.1007/s11249-016-0699-2 Stellwagen, 2015, Structure–performance relations of molybdenum-and tungsten carbide catalysts for deoxygenation, Green Chem., 17, 582, 10.1039/C4GC01831A Leclercq, 1996, Study of the preparation of bulk powder tungsten carbides by temperature programmed reaction with CH4+ H2 mixtures, J. Catal., 158, 142, 10.1006/jcat.1996.0015 Rouxinol, 2004, Hot-filament metal oxide deposition (HFMOD): a novel method for depositing thin films of metallic oxides, J. Braz. Chem. Soc., 15, 324, 10.1590/S0103-50532004000200026 Rodella, 2015, Physical and chemical studies of tungsten carbide catalysts: effects of ni promotion and sulphonated carbon, RSC Adv., 5, 23874, 10.1039/C5RA03252K Jia, 2018, Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors, J. Mater. Chem. A, 6, 15330, 10.1039/C8TA05292A Biloen, 1973, X-ray photoelectron spectroscopy study of supported tungsten oxide, J. Catal., 30, 169, 10.1016/0021-9517(73)90063-8 Mishra, 2012, Liquid phase esterification of acetic acid over WO3promoted β-sic in a solvent free system, Dalton Trans., 41, 14299, 10.1039/c2dt31468a Hachim, 2017, Shifts in macrophage phenotype at the biomaterial interface via IL-4 eluting coatings are associated with improved implant integration, Biomaterials, 112, 95, 10.1016/j.biomaterials.2016.10.019 Quinlan, 2016, Xps investigation of the electrolyte induced stabilization of LICoO2 and “AlPO4”-coated LICoO2 composite electrodes, J. Electrochem. Soc., 163, A300, 10.1149/2.0851602jes Sharan, 2015, The mechanistic insight into the biomilling of goethite (α-FeO (OH)) nanorods using the yeast saccharomyces cerevisiae, RSC Adv., 5, 91785, 10.1039/C5RA16951H Huang, 2011, Effect of extended polymer chains on properties of transparent graphene nanosheets conductive film, J. Mater. Chem., 21, 18236, 10.1039/c1jm13790e Wang, 2015, Influence of surface-functionalized graphene oxide on the cell morphology of poly (methyl methacrylate) composite, J. Mater. Sci. Technol., 31, 463, 10.1016/j.jmst.2015.01.010 Jee, 2015, Enhanced oxygen reduction and evolution by in situ decoration of hematite nanoparticles on carbon nanotube cathodes for high-capacity nonaqueous lithium–oxygen batteries, J. Mater. Chem. A, 3, 13767, 10.1039/C5TA02442K Shpak, 2007, Xps studies of active elements surface of gas sensors based on WO3- X nanoparticles, J. Electron Spectrosc. Relat.Phenom., 156, 172, 10.1016/j.elspec.2006.12.059 Barreca, 2003, Structural and morphological analyses of tungsten oxide nanophasic thin films obtained by MOCVD, Surf. Sci., 532, 439, 10.1016/S0039-6028(03)00215-2 Li, 2017, Fabrication and characterization of WO3 thin films on silicon surface by thermal evaporation, Mater. Lett., 195, 213, 10.1016/j.matlet.2017.02.078 Ospina, 2006, Study of W/WC coatings varying the substrate temperature, 875, 240 Barr, 1995, Nature of the use of adventitious carbon as a binding energy standard, J. Vacuum Sci. Technol. A, 13, 1239, 10.1116/1.579868 Swift, 1982, Adventitious carbon the panacea for energy referencing?, Surf. Interface Anal., 4, 47, 10.1002/sia.740040204 Miller, 2002, Interactions of CO2 and co at fractional atmosphere pressures with iron and iron oxide surfaces: one possible mechanism for surface contamination?, Surf. Interface Anal., 33, 299, 10.1002/sia.1188 Piao, 2002, Adventitious carbon growth on aluminium and gold–aluminium alloy surfaces, Surf. Interface Anal., 33, 591, 10.1002/sia.1425 Vicentini, 2018, Direct growth of mesoporous carbon on aluminum foil for supercapacitors devices, J. Mater. Sci., 1 Demarconnay, 2010, A symmetric carbon/carbon supercapacitor operating at 1.6 v by using a neutral aqueous solution, Electrochem. Commun., 12, 1275, 10.1016/j.elecom.2010.06.036 Liu, 2017, WO3 nanowires on graphene sheets as negative electrode for supercapacitors, J. Nanomater., 2017, 10.1155/2017/2494109 Patel, 2010, An investigation of the insertion of the cations H+, Na+, K+ on the electrochromic properties of the thermally evaporated WO3 thin films grown at different substrate temperatures, Mater. Chem. Phys., 124, 884, 10.1016/j.matchemphys.2010.08.021 Zellner, 2005, Surface science and electrochemical studies of WC and W2C PVD films as potential electrocatalysts, Catal. Today, 99, 299, 10.1016/j.cattod.2004.10.004 Huang, 2015, High performance all-solid-state flexible micro-pseudocapacitor based on hierarchically nanostructured tungsten trioxide composite, ACS Appl. Mater. Interfaces, 7, 27845, 10.1021/acsami.5b09257 Yao, 2017, Facile hydrothermal synthesis of WO3 nanorods for photocatalysts and supercapacitors, J. Alloys Compd., 724, 695, 10.1016/j.jallcom.2017.07.123 Zhang, 2017, Nanocrystalline intermetallic tungsten carbide: nanoscaled solidoid synthesis, nonfaradaic pseudocapacitive property, and electrode material application, Adv. Mater. Interfaces, 4, 1700099, 10.1002/admi.201700099 Jiang, 2018, Insights on the proton insertion mechanism in the electrode of hexagonal tungsten oxide hydrate, J. Am. Chem. Soc., 140, 11556, 10.1021/jacs.8b03959 Chen, 2015, Hierarchical nanostructured WO3 with biomimetic proton channels and mixed ionic-electronic conductivity for electrochemical energy storage, Nano Lett., 15, 6802, 10.1021/acs.nanolett.5b02642 Lin, 2014, Non-grotthuss proton diffusion mechanism in tungsten oxide dihydrate from first-principles calculations, J. Mater. Chem. A, 2, 12280, 10.1039/C4TA02465F Dubal, 2017, Ultrahigh energy density supercapacitors through a double hybrid strategy, Mater. Today Energy, 5, 58, 10.1016/j.mtener.2017.05.001 Conway, 2013 Tilak, 1992, A model to characterize the impedance of electrochemical capacitors arising from reactions of the type oad+ ne- Rad, J. Electroanal. Chem., 324, 405, 10.1016/0022-0728(92)80060-H Fic, 2012, Novel insight into neutral medium as electrolyte for high-voltage supercapacitors, Energy Environ. Sci., 5, 5842, 10.1039/C1EE02262H