A Real‐Time Wearable UV‐Radiation Monitor based on a High‐Performance p‐CuZnS/n‐TiO2 Photodetector

Advanced Materials - Tập 30 Số 43 - 2018
Xiaojie Xu1,1, Jiaxin Chen2, Sa Cai2, Zhenghao Long2, Yong Zhang2, Longxing Su2, Sisi He1, Chengqiang Tang1, Peng Liu1, Huisheng Peng1, Xiaosheng Fang2
1State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
2Department of Materials Science, Fudan University, Shanghai 200438, China

Tóm tắt

AbstractSolar radiation, especially ultraviolet (UV) light, is a major hazard for most skin‐related cancers. The growing needs for wearable health monitoring systems call for a high‐performance real‐time UV sensor to prevent skin diseases caused by excess UV exposure. To this end, here a novel self‐powered p‐CuZnS/n‐TiO2 UV photodetector (PD) with high performance is successfully developed (responsivity of 2.54 mA W−1 at 0 V toward 300 nm). Moreover, by effectively replacing the Ti foil with a thin Ti wire for the anodization process, the conventional planar rigid device is artfully turned into a fiber‐shaped flexible and wearable one. The fiber‐shaped device shows an outstanding responsivity of 640 A W−1, external quantum efficiency of 2.3 × 105%, and photocurrent of ≈4 mA at 3 V, exceeding those of most current UV PDs. Its ultrahigh photocurrent enables it to be easily integrated with commercial electronics to function as a real‐time monitor system. Thus, the first real‐time wearable UV radiation sensor that reads out ambient UV power density and transmits data to smart phones via wifi is demonstrated. This work not only presents a promising wearable health monitor, but also provides a general strategy for designing and fabricating smart wearable electronic devices.

Từ khóa


Tài liệu tham khảo

10.1073/pnas.88.22.10124

10.1073/pnas.71.9.3363

10.1016/S0749-3797(04)00205-3

10.1111/j.1365-4632.2010.04474.x

10.1016/S0959-8049(99)00283-X

10.1038/nphys151

10.1016/j.mattod.2015.06.001

10.1016/j.taap.2003.08.019

10.1039/C8TC01183D

10.1002/adfm.201802029

10.1038/nnano.2009.253

10.1016/j.nanoen.2016.10.009

10.1002/aelm.201700281

10.1002/admt.201700288

10.1149/2.0661510jes

10.3390/s131114813

10.1002/anie.201001374

10.1021/cr0500535

10.1002/adma.201706986

10.1002/admt.201700208

10.1016/j.mattod.2017.11.003

10.1002/adma.201302293

10.1088/1361-6463/aa95b3

10.1002/aelm.201500396

10.1021/acs.nanolett.5b05124

10.1002/adom.201800213

10.1002/pssr.201700381

10.1038/nnano.2015.89

10.1021/cr500061m

10.1002/smll.201602448

10.1002/adfm.201700264

10.1021/am501159s

10.1126/science.1209845

10.1038/nnano.2008.206

10.1002/adma.201002939

10.1002/adma.201204488

10.1002/smll.201500315

10.1002/adfm.201701066

10.1002/lpor.201700222

10.1021/nl3046552

10.1002/adfm.201602195

10.1002/adfm.201700135

10.1002/smll.201202408

10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W