A TB-HIV/AIDS coinfection model and optimal control treatment

Discrete and Continuous Dynamical Systems - Tập 35 Số 9 - Trang 4639-4663 - 2015
Cristiana J. Silva1, Delfim F. M. Torres1
1Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

Tóm tắt

Từ khóa


Tài liệu tham khảo

AVERT, HIV & AIDS Information from AVERT.org,, <a href=

N. Bacaër, 2008, Modeling the joint epidemics of TB and HIV in a South African township,, <em>J. Math. Biol., 57, 557, 10.1007/s00285-008-0177-z

C. P. Bhunu, 2009, Modeling HIV/AIDS and tuberculosis coinfection,, <em>Bul. Math. Biol., 71, 1745, 10.1007/s11538-009-9423-9

M. H. A. Biswas, 2014, A SEIR model for control of infectious diseases with constraints,, <em>Mathematical Biosciences and Engineering, 11, 761, 10.3934/mbe.2014.11.761

S. Bowong, 2010, Optimal control of the transmission dynamics of tuberculosis,, <em>Nonlinear Dynam., 61, 729, 10.1007/s11071-010-9683-9

J. Carr, 1981, <em>Applications Centre Manifold Theory</em>,, Springer-Verlag

C. Castillo-Chavez, 1997, To treat or not to treat: The case of tuberculosis,, <em>J. Math. Biol., 35, 629, 10.1007/s002850050069

C. Castillo-Chavez, 2002, On the computation $R_0$ its role on global stability,, <em>Mathematical approaches for emerging and re-emerging infectious diseases. IMA, 125, 229, 10.1007/978-1-4757-3667-0_13

C. Castillo-Chavez, 2004, Dynamical models of tuberculosis and their applications,, <em>Math. Biosc. Engrg., 1, 361, 10.3934/mbe.2004.1.361

L. Cesari, 1983, <em>Optimization - Theory and Applications. Problems with Ordinary Differential Equations</em>,, Applications of Mathematics 17, 10.1007/978-1-4613-8165-5

P. W. David, 2008, Relation between HIV viral load and infectiousness: A model-based analysis,, <em>The Lancet, 372, 314, 10.1016/S0140-6736(08)61115-0

S. G. Deeks, 2013, The end of AIDS: HIV infection as a chronic disease,, <em>The Lancet, 382, 1525, 10.1016/S0140-6736(13)61809-7

O. Diekmann, 2000, <em>Mathematical Epidemiology of Infectious Diseases</em>,, Wiley Series in Mathematical and Computational Biology

O. Diekmann, 1990, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations,, <em>J. Math. Biol., 28, 365, 10.1007/BF00178324

Y. Emvudu, 2011, Optimal control of the lost to follow up in a tuberculosis model,, <em>Comput. Math. Methods Med., 2011, 10.1155/2011/398476

W. H. Fleming, 1975, <em>Deterministic and Stochastic Optimal Control</em>,, Springer Verlag

R. Fourer, 1993, <em>AMPL: A Modeling Language for Mathematical Programming</em>,, Duxbury Press

H. Getahun, 2010, HIV infection-associated tuberculosis: The epidemiology and the response,, <em>Clin. Infect. Dis., 50, 10.1086/651492

K. Hattaf, 2009, Optimal control of tuberculosis with exogenous reinfection,, <em>Appl. Math. Sci., 3, 231

H. W. Hethcote, 2000, The mathematics of infectious diseases,, <em>SIAM Rev., 42, 599, 10.1137/S0036144500371907

E. Jung, 2002, Optimal control of treatments in a two-strain tuberculosis model,, <em>Discrete Contin. Dyn. Syst. Ser. B, 2, 473, 10.3934/dcdsb.2002.2.473

D. Kirschner, 1999, Dynamics of co-infection with M. tuberculosis and HIV-1,, <em>Theor. Pop. Biol., 55, 94, 10.1006/tpbi.1998.1382

D. Kirschner, 1996, Optimal control of the chemotherapy of HIV,, <em>J. Mathematical Biology, 35, 775, 10.1007/s002850050076

C. K. Kwan, 2011, HIV and tuberculosis: A deadly human syndemic,, <em>Clin. Microbiol. Rev., 24, 351, 10.1128/CMR.00042-10

V. Lakshmikantham, 1989, <em>Stability Analysis of Nonlinear Systems</em>,, Marcel Dekker

U. Ledzewicz, 2011, On optimal singular controls for a general SIR-model with vaccination and treatment,, <em>Discrete Contin. Dyn. Syst., II, 981, 10.3934/proc.2011.2011.981

S. Lenhart, 2007, <em>Optimal Control Applied to Biological Models</em>,, Chapman & Hall/CRC

G. Magombedze, 2010, Modeling the TB/HIV-1 Co-Infection and the Effects of Its Treatment,, <em>Math. Pop. Studies</em>, 17, 12, 10.1080/08898480903467241

G. Magombedze, 2009, Optimal control of a sex structured HIV/AIDS model with condom use,, <em>Mathematical Modelling and Analysis, 14, 483, 10.3846/1392-6292.2009.14.483-494

R. Naresh, 2005, Modelling and analysis of HIV-TB co-infection in a variable size population,, <em>Math. Model. Anal., 10, 275, 10.1080/13926292.2005.9637287

L. Pontryagin, 1962, <em>The Mathematical Theory of Optimal Processes</em>,, Wiley Interscience

PROPT, Matlab Optimal Control Software (DAE, ODE),, <a href=

H. S. Rodrigues, 2010, Dynamics of dengue epidemics when using optimal control,, <em>Math. Comput. Modelling, 52, 1667, 10.1016/j.mcm.2010.06.034

H. S. Rodrigues, 2012, Dengue disease, basic reproduction number and control,, <em>Int. J. Comput. Math., 89, 334, 10.1080/00207160.2011.554540

P. Rodrigues, 2014, Cost-effectiveness analysis of optimal control measures for tuberculosis,, <em>Bull. Math. Biol., 76, 2627, 10.1007/s11538-014-0028-6

L. W. Roeger, 2009, Modeling TB and HIV co-infections,, <em>Math. Biosc. and Eng., 6, 815, 10.3934/mbe.2009.6.815

W. N. Rom, 2007, <em>Environmental and Occupational Medicine</em>,, Lippincott Williams & Wilkins

H. Schättler, 2012, <em>Geometric Optimal Control</em>,, Springer, 10.1007/978-1-4614-3834-2

H. Schättler, 2014, Sufficient conditions for strong local optimality in optimal control problems with $L_2$-type objectives and control constraints,, <em>Discrete Contin. Dyn. Syst. Ser. B, 19, 2657, 10.3934/dcdsb.2014.19.2657

O. Sharomi, 2008, Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment,, <em>Math. Biosc. Eng., 5, 145, 10.3934/mbe.2008.5.145

C. J. Silva, 2012, Optimal control strategies for tuberculosis treatment: A case study in Angola,, <em>Numer. Algebra Control Optim., 2, 601, 10.3934/naco.2012.2.601

C. J. Silva, 2013, Optimal control for a tuberculosis model with reinfection and post-exposure interventions,, <em>Math. Biosci., 244, 154, 10.1016/j.mbs.2013.05.005

K. Styblo, 1978, State of art: Epidemiology of tuberculosis,, <em>Bull. Int. Union Tuberc., 53, 141

H. R. Thieme, 1993, Persistence under relaxed point-dissipaty (with applications to an epidemic model),, <em>SIAM. J. Math. Anal. Appl., 24, 407, 10.1137/0524026

UNAIDS, 2013, <em>Global Report: UNAIDS Report on the Global AIDS Epidemic 2013</em>,, Geneva

P. van den Driessche, 2002, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission,, <em>Math. Biosc., 180, 29, 10.1016/S0025-5564(02)00108-6

A. Wächter, 2006, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,, <em>Math. Program., 106, 25, 10.1007/s10107-004-0559-y

WHO, 2013, <em>Global Tuberculosis Report 2013</em>,, Geneva

WHO, 2014, Tuberculosis,, Fact sheet no. 104