Phân đoạn gan: chỉ định, kỹ thuật và định hướng tương lai

Insights into Imaging - Tập 8 - Trang 377-392 - 2017
Akshat Gotra1,2, Lojan Sivakumaran3,4, Gabriel Chartrand5, Kim-Nhien Vu1, Franck Vandenbroucke-Menu6, Claude Kauffmann1, Samuel Kadoury4,7, Benoît Gallix2, Jacques A. de Guise5, An Tang1,4
1Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Saint-Luc Hospital, Montreal, Canada
2Department of Radiology, McGill University, Montreal General Hospital, Montreal, Canada
3University of Montreal, Montreal, Canada
4Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
5Imaging and Orthopaedics Research Laboratory (LIO), École de Technologie Supérieure, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Canada
6Department of Hepato-biliary and Pancreatic Surgery, University of Montreal, Saint-Luc Hospital, Montreal, Canada
7École Polytechnique de Montréal, University of Montreal, Montreal, Canada

Tóm tắt

Đo thể tích gan đã trở thành một công cụ quan trọng trong thực hành lâm sàng. Thể tích gan được đánh giá chủ yếu thông qua phân đoạn các hình ảnh từ chụp cắt lớp vi tính (CT) và cộng hưởng từ (MRI). Mục tiêu của bài báo này là cung cấp một cái nhìn tổng quan dễ tiếp cận về phân đoạn gan nhằm vào các bác sĩ chẩn đoán hình ảnh và các chuyên gia y tế khác. Sử dụng hình ảnh từ CT và MRI, bài báo này xem xét các chỉ định cho việc phân đoạn gan, các phương pháp kỹ thuật được sử dụng trong phần mềm phân đoạn và vai trò đang phát triển của phân đoạn gan trong thực hành lâm sàng. Phân đoạn gan để đánh giá thể tích được chỉ định trước khi thực hiện phẫu thuật cắt gan lớn, tắc mạch tĩnh mạch cửa, phân chia gan liên kết và thắt tĩnh mạch cửa để phẫu thuật cắt gan theo giai đoạn (ALPPS) cùng với ghép gan. Phần mềm phân đoạn có thể được phân loại theo lượng đầu vào của người sử dụng: phân đoạn thủ công, bán tự động và hoàn toàn tự động. Phân đoạn thủ công được coi là "tiêu chuẩn vàng" trong thực hành lâm sàng và nghiên cứu, nhưng mất nhiều thời gian và công sức. Các phương pháp phân đoạn ngày càng tự động hóa mạnh mẽ hơn, nhưng cũng có thể gặp phải một số cạm bẫy trong phân đoạn. Những ứng dụng mới nổi của phân đoạn bao gồm lập kế hoạch phẫu thuật và tích hợp với các chỉ số sinh học dựa trên MRI. Phân đoạn gan có nhiều ứng dụng lâm sàng và đang mở rộng phạm vi. Các bác sĩ lâm sàng có thể sử dụng các tùy chọn phân đoạn bán tự động hoặc hoàn toàn tự động để tích hợp hiệu quả việc đo thể tích vào thực hành lâm sàng.

Từ khóa

#Phân đoạn gan #đo thể tích #xét nghiệm CT #MRI #ứng dụng lâm sàng

Tài liệu tham khảo

Castell DO, O’Brien KD, Muench H, Chalmers TC (1969) Estimation of liver size by percussion in normal individuals. Ann Intern Med 70(6):1183–1189 Vauthey JN, Chaoui A, Do KA et al (2000) Standardized measurement of the future liver remnant prior to extended liver resection: methodology and clinical associations. Surgery 127(5):512–519. doi:10.1067/msy.2000.105294 Martel G, Cieslak KP, Huang R et al (2015) Comparison of techniques for volumetric analysis of the future liver remnant: implications for major hepatic resections. HPB (Oxford) 17(12):1051–1057. doi:10.1111/hpb.12480 Heymsfield SB, Fulenwider T, Nordlinger B, Barlow R, Sones P, Kutner M (1979) Accurate measurement of liver, kidney, and spleen volume and mass by computerized axial tomography. Ann Intern Med 90(2):185–187 Nakayama Y, Li Q, Katsuragawa S et al (2006) Automated hepatic volumetry for living related liver transplantation at multisection CT. Radiology 240(3):743–748. doi:10.1148/radiol.2403050850 Masutani Y, Uozumi K, Akahane M, Ohtomo K (2006) Liver CT image processing: a short introduction of the technical elements. Eur J Radiol 58(2):246–251 Campadelli P, Casiraghi E, Esposito A (2009) Liver segmentation from computed tomography scans: a survey and a new algorithm. Artif Intell Med 45(2–3):185–196. doi:10.1016/j.artmed.2008.07.020 Fulcher AS, Szucs RA, Bassignani MJ, Marcos A (2001) Right lobe living donor liver transplantation: preoperative evaluation of the donor with MR imaging. AJR Am J Roentgenol 176(6):1483–1491 Yamanaka J, Saito S, Fujimoto J (2007) Impact of preoperative planning using virtual segmental volumetry on liver resection for hepatocellular carcinoma. World J Surg 31(6):1249–1255. doi:10.1007/s00268-007-9020-8 Couinaud C (1954) Liver lobes and segments: notes on the anatomical architecture and surgery of the liver. Presse Med 62(33):709–712 Dimitroulis D, Tsaparas P, Valsami S et al (2014) Indications, limitations and maneuvers to enable extended hepatectomy: current trends. World J Gastroenterol 20(24):7887–7893. doi:10.3748/wjg.v20.i24.7887 Belghiti J, Clavien P, Gadzijev E et al (2000) The Brisbane 2000 terminology of liver anatomy and resections. HBP (Oxford) 2(3):333–339 Gotra A, Chartrand G, Vu K et al (2014) Liver segmentation: a primer for radiologists. Radiological Society of North America 2014 scientific assembly and annual meeting, Chicago Ferrero A, Vigano L, Polastri R et al (2007) Postoperative liver dysfunction and future remnant liver: where is the limit? Results of a prospective study. World J Surg. doi:10.1007/s00268-007-9123-2 d’Assignies G, Kauffmann C, Boulanger Y et al (2011) Simultaneous assessment of liver volume and whole liver fat content: a step towards one-stop shop preoperative MRI protocol. Eur J Radiol 21(2):301–309. doi:10.1007/s00330-010-1941-1 Abdalla EK, Adam R, Bilchik AJ, Jaeck D, Vauthey JN, Mahvi D (2006) Improving resectability of hepatic colorectal metastases: expert consensus statement. Ann Surg Oncol 13(10):1271–1280. doi:10.1245/s10434-006-9045-5 Abdalla EK (2010) Portal vein embolization (prior to major hepatectomy) effects on regeneration, resectability, and outcome. J Surg Oncol 102(8):960–967. doi:10.1002/jso.21654 Ribero D, Abdalla EK, Madoff DC, Donadon M, Loyer EM, Vauthey JN (2007) Portal vein embolization before major hepatectomy and its effects on regeneration, resectability and outcome. Br J Surg 94(11):1386–1394. doi:10.1002/bjs.5836 de Graaf W, van Lienden KP, van den Esschert JW, Bennink RJ, van Gulik TM (2011) Increase in future remnant liver function after preoperative portal vein embolization. Br J Surg 98(6):825–834. doi:10.1002/bjs.7456 Leung U, Simpson AL, Araujo RL et al (2014) Remnant growth rate after portal vein embolization is a good early predictor of post-hepatectomy liver failure. J Am Coll Surg 219(4):620–630. doi:10.1016/j.jamcollsurg.2014.04.022 Meier RP, Toso C, Terraz S et al (2015) Improved liver function after portal vein embolization and an elective right hepatectomy. HPB (Oxford) 17(11):1009–1018. doi:10.1111/hpb.12501 Schnitzbauer AA, Lang SA, Goessmann H et al (2012) Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann Surg 255(3):405–414. doi:10.1097/SLA.0b013e31824856f5 Ielpo B, Caruso R, Ferri V et al (2013) ALPPS procedure: our experience and state of the art. Hepato-Gastroenterology 60(128):2069–2075 Hernandez-Alejandro R, Bertens KA, Pineda-Solis K, Croome KP (2015) Can we improve the morbidity and mortality associated with the associating liver partition with portal vein ligation for staged hepatectomy (ALPPS) procedure in the management of colorectal liver metastases? Surgery 157(2):194–201. doi:10.1016/j.surg.2014.08.041 Alvarez FA, Ardiles V, Sanchez Claria R, Pekolj J, de Santibanes E (2013) Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): tips and tricks. J Gastrointest Surg 17(4):814–821. doi:10.1007/s11605-012-2092-2 Broering DC, Sterneck M, Rogiers X (2003) Living donor liver transplantation. J Hepatol 38(Suppl 1):S119–S135 Low HC, Da Costa M, Prabhakaran K et al (2006) Impact of new legislation on presumed consent on organ donation on liver transplant in Singapore: a preliminary analysis. Transplantation 82(9):1234–1237. doi:10.1097/01.tp.0000236720.66204.16 Lo CM, Fan ST, Liu CL et al (1997) Extending the limit on the size of adult recipient in living donor liver transplantation using extended right lobe graft. Transplantation 63(10):1524–1528 Ben-Haim M, Emre S, Fishbein TM et al (2001) Critical graft size in adult-to-adult living donor liver transplantation: impact of the recipient’s disease. Liver Transpl 7(11):948–953. doi:10.1053/jlts.2001.29033 Hermoye L, Laamari-Azjal I, Cao Z et al (2005) Liver segmentation in living liver transplant donors: comparison of semiautomatic and manual methods. Radiology 234(1):171–178. doi:10.1148/radiol.2341031801 Kiuchi T, Tanaka K, Ito T et al (2003) Small-for-size graft in living donor liver transplantation: how far should we go? Liver Transpl 9(9):S29–S35. doi:10.1053/jlts.2003.50198 Fan ST, Lo CM, Liu CL, Yong BH, Chan JK, Ng IO (2000) Safety of donors in live donor liver transplantation using right lobe grafts. Arch Surg 135(3):336–340 Malmberg F, Nordenskjöld R, Strand R, Kullberg J (2014) SmartPaint: a tool for interactive segmentation of medical volume images. Comput Methods Biomech Biomed Eng Imaging Vis 5(1):36–44. doi:10.1080/21681163.2014.960535 Udupa JK, Leblanc VR, Zhuge Y et al (2006) A framework for evaluating image segmentation algorithms. Comput Med Imaging Graph 30(2):75–87. doi:10.1016/j.compmedimag.2005.12.001 Chartrand G, Cresson T, Chav R, Gotra A, Tang A, De Guise J (2013) Semi-automated liver CT segmentation using Laplacian meshes. 2014 I.E. International Symposium on Biomedical Imaging, Bejing. doi:10.1109/ISBI.2014.6867952 Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331 Falcão AX, Udupa JK, Samarasekera S, Sharma AS, Hirsch BE, Lotufo RA (1998) User-steered image segmentation paradigms: live wire and live lane. Graph Model Image Process 60(4):233–260 Lopez-Mir F, Gonzalez P, Naranjo V, Pareja E, Alcaniz M, Solaz-Minguez J (2013) A fast computational method based on 3D morphology and a statistical filter. Int Conf Bioinform Biomed Eng 2013, Granada, pp 483–490 Sharma N, Aggarwal LM (2010) Automated medical image segmentation techniques. J Med Phys 35(1):3–14. doi:10.4103/0971-6203.58777 Boykov YY, Jolly MP (2001) Interactive graph-cuts for optimal boundary and region segmentation of objects in N-D images. ICCV, Vancouver, I:105–112 Soler L, Delingette H, Malandain G et al (2001) Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery. Comput Aided Surg 6(3):131–142. doi:10.1002/igs.1016 Lamecker H, Lange T, Seebass M (2004) Segmentation of the liver using a 3D statistical shape model. Report 04–09, ZIB, Berlin Dahlen Heimann T, van Ginneken B, Styner MA et al (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28(8):1251–1265. doi:10.1109/TMI.2009.2013851 Nealen PM, Schmidt MF (2006) Distributed and selective auditory representation of song repertoires in the avian song system. J Neurophysiol 96(6):3433–3447. doi:10.1152/jn.01130.2005 Gotra A, Chartrand C, Vu KN et al (2015) Comparison of MRI and CT-based semiautomated liver segmentation: a validation study. Abdom Radiol 42(2):478–489. doi:10.1007/s00261-016-0912-7 Jie L, Defeng W, Lin S, Pheng AH (2012) Automatic liver segmentation in CT images based on support vector machine. Proceedings of 2012 IEEE-EMBS, Hong Kong. doi:10.1109/BHI.2012.6211581 Norajitra T, Meinzer HP, Maier-Hein KH (2015) 3D statistical shape models incorporating 3D random forest regression voting for robust CT liver segmentation. Medical Imaging 2015: Computer-Aided Diagnosis. SPIE, Orlando. doi:10.1117/12.2082909 Christ PF, Elshaer MEA, Ettlinger F et al (2016) Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. MICCAI 2016, 19th International Conference on Medical Image Computing and Computer Assisted Intervention, Athens, 17-21 October 2016. doi:10.1007/978-3-319-46723-8_48 Li CY, Wang XY, Li JL et al (2013) Joint probabilistic model of shape and intensity for multiple abdominal organ segmentation from volumetric CT images. IEEE J Biomed 17(1):92–102. doi:10.1109/TITB.2012.2227273 Rusko L, Bekes G (2011) Liver segmentation for contrast-enhanced MR images using partitioned probabilistic model. Int J Comput Assist Radiol Surg 6(1):13–20. doi:10.1007/s11548-010-0493-9 Heimann T, Munzing S, Meinzer HP, Wolf I (2007) A shape-guided deformable model with evolutionary algorithm initialization for 3D soft tissue segmentation. Information Processing in Medical Imaging, 20th International Conference, IPMI 2007, Kerkrade, 2-6 July 2007. doi:10.1007/978-3-540-73273-0_1 Torkzad MR, Noren A, Kullberg J (2012) Stereology: a novel technique for rapid assessment of liver volume. Insights Imaging 3(4):387–393. doi:10.1007/s13244-012-0166-z Sahin B, Ergur H (2006) Assessment of the optimum section thickness for the estimation of liver volume using magnetic resonance images: a stereological gold standard study. Eur J Radiol 57(1):96–101. doi:10.1016/j.ejrad.2005.07.006 Filippone A, Blakeborough A, Breuer J et al (2010) Enhancement of liver parenchyma after injection of hepatocyte-specific MRI contrast media: a comparison of gadoxetic acid and gadobenate dimeglumine. J Magn Reson Imaging 31(2):356–364. doi:10.1002/jmri.22054 Bracco (2017) MultiHance (gadobenate dimeglumine injection) product monograph. Bracco Diagnostics Website. Available via http://imaging.bracco.com/us-en/products-and-solutions/magnetic-resonance-imaging/multihance. Accessed 2 April 2017 Hammerstingl R, Huppertz A, Breuer J et al (2008) Diagnostic efficacy of gadoxetic acid (Primovist)-enhanced MRI and spiral CT for a therapeutic strategy: comparison with intraoperative and histopathologic findings in focal liver lesions. Eur Radiol 18(3):457–467. doi:10.1007/s00330-007-0716-9 Halavaara J, Breuer J, Ayuso C et al (2006) Liver tumor characterization: comparison between liver-specific gadoxetic acid disodium-enhanced MRI and biphasic CT—a multicenter trial. J Comput Assist Tomogr 30(3):345–354 Grieser C, Denecke T, Rothe JH et al (2015) Gd-EOB enhanced MRI T1-weighted 3D-GRE with and without elevated flip angle modulation for threshold-based liver volume segmentation. Acta Radiol 56(12):1419–1427. doi:10.1177/0284185114558975 Fernandez-de-Manuel L, Rubio JL, Ledesma-Carbayo MJ et al (2009) 3D liver segmentation in preoperative CT images using a level-sets active surface method. The 31st Annual International Conference of the IEEE EMBS, Minneapolis, 2-6 September 2009 Reiner CS, Karlo C, Petrowsky H, Marincek B, Weishaupt D, Frauenfelder T (2009) Preoperative liver volumetry: how does the slice thickness influence the multidetector computed tomography and magnetic resonance liver volume measurements? J Comput Assist Tomogr 33(3):390–397 Huynh HT, Karademir I, Oto A, Suzuki K (2014) Computerized liver volumetry on MRI by using 3D geodesic active contour segmentation. AJR Am J Roentgenol 202(1):152–159. doi:10.2214/AJR.13.10812 Reeder SB, Cruite I, Hamilton G, Sirlin CB (2011) Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 34(4):729–749. doi:10.1002/jmri.22580 Yokoo T, Bydder M, Hamilton G et al (2009) Nonalcoholic fatty liver disease: diagnostic and fat-grading accuracy of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 T. Radiology 251(1):67–76. doi:10.1148/radiol.2511080666 Yokoo T, Shiehmorteza M, Hamilton G et al (2011) Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology 258(3):749–759. doi:10.1148/radiol.10100659 Le TA, Chen J, Changchien C et al (2012) Effect of colesevelam on liver fat quantified by magnetic resonance in nonalcoholic steatohepatitis: a randomized controlled trial. Hepatology 56(3):922–932. doi:10.1002/hep.25731 Tang A, Chen J, Le TA et al (2015) Cross-sectional and longitudinal evaluation of liver volume and total liver fat burden in adults with nonalcoholic steatohepatitis. Abdom Imaging 40(1):26–37. doi:10.1007/s00261-014-0175-0 Hernando D, Levin YS, Sirlin CB, Reeder SB (2014) Quantification of liver iron with MRI: state of the art and remaining challenges. J Magn Reson Imaging 40(5):1003–1021. doi:10.1002/jmri.24584 Zorzi D, Laurent A, Pawlik TM, Lauwers GY, Vauthey JN, Abdalla EK (2007) Chemotherapy-associated hepatotoxicity and surgery for colorectal liver metastases. Br J Surg 94(3):274–286. doi:10.1002/bjs.5719 Jhaveri K, Cleary S, Audet P et al (2015) Consensus statements from a multidisciplinary expert panel on the utilization and application of a liver-specific MRI contrast agent (gadoxetic acid). AJR Am J Roentgenol 204(3):498–509. doi:10.2214/ajr.13.12399 Tamada T, Ito K, Higaki A et al (2011) Gd-EOB-DTPA-enhanced MR imaging: evaluation of hepatic enhancement effects in normal and cirrhotic livers. Eur J Radiol 80(3):e311–e316. doi:10.1016/j.ejrad.2011.01.020 Gschwend S, Ebert W, Schultze-Mosgau M, Breuer J (2011) Pharmacokinetics and imaging properties of Gd-EOB-DTPA in patients with hepatic and renal impairment. Investig Radiol 46(9):556–566. doi:10.1097/RLI.0b013e31821a218a Motosugi U, Ichikawa T, Sano K et al (2011) Double-dose gadoxetic acid-enhanced magnetic resonance imaging in patients with chronic liver disease. Investig Radiol 46(2):141–145. doi:10.1097/RLI.0b013e3181f9c487