Hydroclimate and vegetation changes in southeastern Amazonia over the past ∼25,000 years
Tài liệu tham khảo
Absy, 1991, Mise en évidence de quatre phases d’ouverture de la forêt dense dans le Sud-Est de l'Amazonie au cours des 60 000 dernières années : première comparaison avec d’autres régions tropicales, C. R. Acad. Sci., 312, 673
Absy, 2014, Palynological differentiation of savanna types in Carajás, Brazil (southeastern Amazonia), Palynology, 38, 78, 10.1080/01916122.2013.842189
Aichner, 2015, High-resolution leaf wax carbon and hydrogen isotopic record of the late Holocene paleoclimate in arid Central Asia, Clim. Past, 11, 619, 10.5194/cp-11-619-2015
Ampuero, 2020, The forest effects on the isotopic composition of rainfall in the northwestern Amazon Basin, J. Geophys. Res. Atmos., 125, 1
Arbuszewski, 2013, Meridional shifts of the Atlantic intertropical convergence zone since the last glacial maximum, Nat. Geosci., 6, 959, 10.1038/ngeo1961
Arz, 1998, Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from Last-Glacial marine deposits off northeastern Brazil, Quat. Res., 50, 157, 10.1006/qres.1998.1992
Baker, 2001, The history of south American tropical precipitation for the past 25,000 years, Science, 291, 640, 10.1126/science.291.5504.640
Baker, 2015, Nature and causes of Quaternary climate variation of tropical South America, Quat. Sci. Rev., 124, 31, 10.1016/j.quascirev.2015.06.011
Berger, 1991, Insolation values for the climate of the last 10 million years, Quat. Sci. Rev., 10, 297, 10.1016/0277-3791(91)90033-Q
Bernal, 2016, High-resolution holocene south American monsoon history recorded by a speleothem from Botuverá cave, Brazil, Earth Planet Sci. Lett., 450, 186, 10.1016/j.epsl.2016.06.008
Bi, 2005, Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes, Org. Geochem., 36, 1405, 10.1016/j.orggeochem.2005.06.001
Blaauw, 2011, Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal., 6, 457, 10.1214/ba/1339616472
Brienen, 2015, Long-term decline of the Amazon carbon sink, Nature, 519, 344, 10.1038/nature14283
Brooks, 1985, Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light, Planta, 165, 397, 10.1007/BF00392238
Burbridge, 2004, Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon, Quat. Res., 61, 215, 10.1016/j.yqres.2003.12.004
Bush, 2017, The resilience of Amazonian forests, Nature, 541, 167, 10.1038/541167a
Bush, 2004, Amazonian paleoecological histories: one hill, three watersheds, Palaeogeogr. Palaeoclimatol. Palaeoecol., 214, 359, 10.1016/S0031-0182(04)00401-8
Bush, 2004, 48,000 Years of climate and forest change in a biodiversity hot spot, Science, 303, 827, 10.1126/science.1090795
Carreira, 2003
Castañeda, 2009, Late Quaternary vegetation history of southeast Africa: the molecular isotopic record from Lake Malawi, Palaeogeogr. Palaeoclimatol. Palaeoecol., 275, 100, 10.1016/j.palaeo.2009.02.008
Cheng, 2013, Climate change patterns in Amazonia and biodiversity, Nat. Commun., 4, 1, 10.1038/ncomms2415
Chikaraishi, 2004, Hydrogen and carbon isotopic fractionations of lipid biosyntheses among terrestrial (C3, C4 and CAM) and aquatic plants, Phytochemistry, 65, 1369, 10.1016/j.phytochem.2004.03.036
Cohen, 2014, Late Pleistocene glacial forest of Humaitá-western Amazonia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 415, 37, 10.1016/j.palaeo.2013.12.025
Colinvaux, 1996, A long pollen record from lowland Amazonia: forest cooling in Glacial times, Science, 274, 85, 10.1126/science.274.5284.85
Colinvaux, 1999
Collins, 2013, Estimating the hydrogen isotopic composition of past precipitation using leaf-waxes from western Africa, Quat. Sci. Rev., 65, 88, 10.1016/j.quascirev.2013.01.007
Cordeiro, 2008, Holocene fires in East Amazonia (Carajás), new evidence, chronology and relation with paleoclimate, Global Planet. Change, 61, 49, 10.1016/j.gloplacha.2007.08.005
Crivellari, 2018, Increased Amazon freshwater discharge during late Heinrich Stadial 1, Quat. Sci. Rev., 181, 144, 10.1016/j.quascirev.2017.12.005
Cruz, 2005, Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil, Nature, 434, 63, 10.1038/nature03365
Cruz, 2006, Reconstruction of regional atmospheric circulation features during the late Pleistocene in subtropical Brazil from oxygen isotope composition of speleothems, Earth Planet Sci. Lett., 248, 495, 10.1016/j.epsl.2006.06.019
Cruz, 2009, Orbitally driven east--west antiphasing of South American precipitation, Nat. Geosci., 2, 210, 10.1038/ngeo444
Curtis, 1986, Controls on the precipitation of early diagenetic calcite, dolomite and siderite concretions in complex depositional sequences, 23
D'Almeida, 2001, The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution, Int. J. Climatol., 27, 633, 10.1002/joc.1475
D'Apolito, 2013, The hill of Six lakes revisited: new data and re-evaluation of a key Pleistocene Amazon site, Quat. Sci. Rev., 76, 140, 10.1016/j.quascirev.2013.07.013
Dansgaard, 1964, Stable isotopes in precipitation, Tellus, 16, 436, 10.1111/j.2153-3490.1964.tb00181.x
Deplazes, 2013, Links between tropical rainfall and North Atlantic climate during the last glacial period, Nat. Geosci., 6, 213, 10.1038/ngeo1712
Diefendorf, 2010, Clarifying the influence of water availability and plant types on carbon isotope discrimination by C3 plants, Proc. Natl. Acad. Sci. Unit. States Am., 107, 19691
Diefendorf, 2017, Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: a review, Org. Geochem., 103, 1, 10.1016/j.orggeochem.2016.10.016
Dupont, 2010, Two-step vegetation response to enhanced precipitation in Northeast Brazil during Heinrich event 1, Global Change Biol., 16, 1647, 10.1111/j.1365-2486.2009.02023.x
Eglinton, 1967, Leaf epicuticular waxes, Science, 156, 1322, 10.1126/science.156.3780.1322
Eltahir, 1994, Precipitation recycling in the Amazon basin, Q. J. R. Meteorol. Soc., 120, 861, 10.1002/qj.49712051806
Farquhar, 1989, Carbon isotope discrimination and photosynthesis, Annu. Rev. Plant Physiol. Plant Mol. Biol., 40, 503, 10.1146/annurev.pp.40.060189.002443
Flückiger, 2002, High resolution Holocene N2O ice core record and its relationship with CH4 and CO2, Global Biogeochem. Cycles, 16, 1, 10.1029/2001GB001417
Fontes, 2017, Paleoenvironmental dynamics in South Amazonia, Brazil, during the last 35,000 years inferred from pollen and geochemical records of Lago do Saci, Quat. Sci. Rev., 173, 161, 10.1016/j.quascirev.2017.08.021
Fornace, 2014, A 60,000-year record of hydrologic variability in the central Andes from the hydrogen isotopic composition of leaf waxes in lake Titicaca sediments, Earth Planet Sci. Lett., 408, 263, 10.1016/j.epsl.2014.10.024
Fornace, 2016, Late Quaternary environmental change in the interior South American tropics: new insight from leaf wax stable isotopes, Earth Planet Sci. Lett., 438, 75, 10.1016/j.epsl.2016.01.007
Freitas, 2001, Late Quaternary vegetation dynamics in the southern Amazon Basin inferred from carbon isotopes in soil organic matter, Quat. Res., 55, 39, 10.1006/qres.2000.2192
Garcin, 2012, Hydrogen isotope ratios of lacustrine sedimentary n-alkanes as proxies of tropical African hydrology: insights from a calibration transect across Cameroon, Geochem. Cosmochim. Acta, 79, 106, 10.1016/j.gca.2011.11.039
Garcin, 2014, Reconstructing C3 and C4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa, Geochem. Cosmochim. Acta, 142, 482, 10.1016/j.gca.2014.07.004
Garreaud, 2009, Present-day south American climate, Palaeogeogr. Palaeoclimatol. Palaeoecol., 281, 180, 10.1016/j.palaeo.2007.10.032
Gastmans, 2017, Controls over spatial and seasonal variations on isotopic composition of the precipitation along the central and eastern portion of Brazil, Isot. Environ. Health Stud., 53, 518, 10.1080/10256016.2017.1305376
Gosling, 2009, Differentiation between Neotropical rainforest, dry forest, and savannah ecosystems by their modern pollen spectra and implications for the fossil pollen record, Rev. Palaeobot. Palynol., 153, 70, 10.1016/j.revpalbo.2008.06.007
Grace, 1995, Carbon dioxide uptake by an undisturbed tropical rain forest in southwest Amazonia, 1992 to 1993, Science, 270, 778, 10.1126/science.270.5237.778
Grimm, 1987, CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares, Comput. Geosci., 13, 13, 10.1016/0098-3004(87)90022-7
Grimm, 2019
Guimarães, 2014, Source and distribution of pollen and spores in surface sediments of a plateau lake in southeastern Amazonia, Quat. Int., 352, 181, 10.1016/j.quaint.2014.06.004
Guimarães, 2016, Late Quaternary environmental and climate changes registered in lacustrine sediments of the Serra Sul de Carajás, south-east Amazonia, J. Quat. Sci., 31, 61, 10.1002/jqs.2839
Guimarães, 2017, Modern pollen rain as a background for palaeoenvironmental studies in the Serra dos Carajás, southeastern Amazonia, Holocene, 27, 1055, 10.1177/0959683616683260
Guimarães, 2021, Lake sedimentary processes and vegetation changes over the last 45k cal a bp in the uplands of south-eastern Amazonia, J. Quat. Sci., 36, 255, 10.1002/jqs.3268
Häggi, 2017, Response of the Amazon rainforest to late Pleistocene climate variability, Earth Planet Sci. Lett., 479, 50, 10.1016/j.epsl.2017.09.013
Hermanowski, 2012, Palaeoenvironmental dynamics and underlying climatic changes in southeast Amazonia (Serra Sul dos Carajás, Brazil) during the late Pleistocene and Holocene, Palaeogeogr. Palaeoclimatol. Palaeoecol., 365–366, 227, 10.1016/j.palaeo.2012.09.030
Hermanowski, 2015, Possible linkages of palaeofires in southeast Amazonia to a changing climate since the Last Glacial Maximum, Veg. Hist. Archaeobotany, 24, 279, 10.1007/s00334-014-0472-0
Holtvoeth, 2019, The paleolimnologist's guide to compound-specific stable isotope analysis – an introduction to principles and applications of CSIA for Quaternary lake sediments, Quat. Sci. Rev., 207, 101, 10.1016/j.quascirev.2019.01.001
2021
Jacob, 2007, Paleohydrological changes during the last deglaciation in Northern Brazil, Quat. Sci. Rev., 26, 1004, 10.1016/j.quascirev.2006.12.004
Kanner, 2012, High-latitude forcing of the South American summer monsoon during the last glacial, Science, 335, 570, 10.1126/science.1213397
Kohn, 2010, Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate, Proc. Natl. Acad. Sci. Unit. States Am., 107, 19691, 10.1073/pnas.1004933107
Kukla, 2021, The resilience of Amazon tree cover to past and present drying, Global Planet. Change, 202, 103520, 10.1016/j.gloplacha.2021.103520
Ledru, 1998, Absence of last glacial maximum records in lowland tropical forests, Quat. Res., 49, 233, 10.1006/qres.1997.1953
Ledru, 2006, Millenial-scale climatic and vegetation changes in a northern Cerrado (northeast, Brazil) since the last glacial maximum, Quat. Sci. Rev., 25, 1110, 10.1016/j.quascirev.2005.10.005
Li, 2017, Effects of early diagenesis on molecular distributions and carbon isotopic compositions of leaf wax long chain biomarker n-alkanes: Comparison of two one-year-long burial experiments, Org. Geochem., 104, 8, 10.1016/j.orggeochem.2016.11.006
Liebmann, 2011, the South American monsoon system, 137
Lima, 2018, Late Pleistocene glacial forest elements of Brazilian Amazonia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 490, 617, 10.1016/j.palaeo.2017.11.050
Liu, 2014, The Holocene temperature conundrum, Proc. Natl. Acad. Sci. Unit. States Am., 111, E3501, 10.1073/pnas.1407229111
Livingstone, 1955, A lightweight piston sampler for lake deposits, Ecology, 36, 137, 10.2307/1931439
Marengo, 2004, Interdecadal variability and trends of rainfall across the Amazon basin, Theor. Appl. Climatol., 78, 79, 10.1007/s00704-004-0045-8
Marengo, 2006, On the hydrological cycle of the Amazon Basin: a historical review and current state-of-the-art, Rev. Brasil. Meteorol., 21, 1
Maslin, 2012, Amazon Fan biomarker evidence against the Pleistocene rainforest refuge hypothesis?, J. Quat. Sci., 27, 451, 10.1002/jqs.1567
Maurity, 1995, Evolução recente da cobertura de alteração no Platô N1- Serra dos Carajás-PA. Degradação, pseudocarstificação, espeleotemas. Boletim do Museu Paraense Emílio Goeldi, Sér. Ciên. Terra, 7, 331
Mayle, 2000, Millennial-scale dynamics of southern Amazonian rain forests, Science, 290, 2291, 10.1126/science.290.5500.2291
Mayle, 2004, Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum, Philos. Trans. Roy. Soc. B, 359, 499, 10.1098/rstb.2003.1434
Mayle, 2008, Impact of a drier early–mid-holocene climate upon Amazonian forests, Philos. Trans. Roy. Soc. B, 363, 1829, 10.1098/rstb.2007.0019
Medina, 1999, Natural abundance of 13C in tropical grasses from the INPA, Instituto Nacional de Pesquisas da Amazônia, herbarium, Braz. J. Bot., 22, 1, 10.1590/S0100-84041999000100007
Mitre, 2018, Nutrient and water dynamics of Amazonian canga vegetation differ among physiog- nomies and from those of other Neotropical ecosystems, Plant Ecol., 219, 1341, 10.1007/s11258-018-0883-6
Morais, 2002, An assessment of the discrimination of iron-mineralize laterites in the Amazon Region (Carajás Province) based on textural attributes from C-band airborne SAR data, Asian J. Geoinf., 2, 11
Mosblech, 2012, North Atlantic forcing of Amazonian precipitation during the last ice age, Nat. Geosci., 5, 817, 10.1038/ngeo1588
Mota, 2015, Vegetação sobre sistemas ferruginosos da Serra dos Carajás, 289
Mota, 2018, Amazon canga: the unique vegetation of Carajás revealed by the list of seed plants, Rodriguesia, 69, 1435, 10.1590/2175-7860201869336
Mulitza, 2017, Synchronous and proportional deglacial changes in Atlantic meridional overturning and northeast Brazilian precipitation, Paleoceanography, 32, 622, 10.1002/2017PA003084
Niedermeyer, 2010, Orbital- and millennial-scale changes in the hydrologic cycle and vegetation in the western African Sahel: insights from individual plant wax δD and δ13C, Quat. Sci. Rev., 29, 2996, 10.1016/j.quascirev.2010.06.039
Niedermeyer, 2016, The stable hydrogen isotopic composition of sedimentary plant waxes as quantitative proxy for rainfall in the West African Sahel, Geochem. Cosmochim. Acta, 184, 55, 10.1016/j.gca.2016.03.034
Nobre, 2009, Characteristics of Amazonian climate: main features, 149
Novello, 2017, A high-resolution history of the South American monsoon from last glacial maximum to the holocene, Sci. Rep., 7, 1, 10.1038/srep44267
Nunes, 2015, Soil-vegetation relationships on a banded ironstone ‘island’, Carajás plateau, Brazilian eastern Amazonia, An Acad. Bras Ciências, 87, 2097, 10.1590/0001-376520152014-0106
Oksanen
Olszewski, 1989, The age, origin, and tectonics of the Grão Pará Group and associated rocks, Serra dos Carajás, Brazil: Archean continental vulcanism and rifting, Precambrian Res., 42, 229, 10.1016/0301-9268(89)90013-2
Paduano, 2003, A vegetation and fire history of Lake Titicaca since the last glacial maximum, Palaeogeogr. Palaeoclimatol. Palaeoecol., 194, 259, 10.1016/S0031-0182(03)00281-5
Pedro, 2012, Tightened constraints on the time-lag between Antarctic temperature and CO2 during the last deglaciation, Clim. Past, 8, 1213, 10.5194/cp-8-1213-2012
Pereira, 2016, Two new species of Isoetes (isoetaceae) from northern Brazil, Phytotaxa, 272, 141, 10.11646/phytotaxa.272.2.5
Pessenda, 1991, Datação radiocarbônica de amostras de interesse arqueológico e geológico por espectrometria de cintilação líquida de baixa radiação de fundo, Quím. Nova, 14, 98
Pessenda, 1998, 14C dating and stable carbon isotopes of soil organic matter in forest–savanna boundary areas in southern Brazilian Amazon region, Radiocarbon, 40, 1013, 10.1017/S0033822200018981
Pessenda, 1998, The carbon isotope record in soils along a forest– cerrado ecosystem transect: implication for vegetation changes in Rondônia State, southwestern Brazilian Amazon region, Holocene, 8, 631, 10.1191/095968398673187182
Pinaya, 2019, Brazilian montane rainforest expansion induced by Heinrich Stadial 1 event, Sci. Rep., 9, 1, 10.1038/s41598-019-53036-1
Poynter, 1989, Aeolian-derived higher plant lipids in the marine sedimentary record: links with paleoclimate, 435
Prado, 2013, A mid-Holocene climate reconstruction for eastern South America, Clim. Past, 9, 2117, 10.5194/cp-9-2117-2013
Prentice, 2009, Ecosystem effects of CO2 concentration: evidence from past climates, Clim. Past, 5, 297, 10.5194/cp-5-297-2009
R Development Core Team, 2013
Reimer, 2020, The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP), Radiocarbon, 62, 725, 10.1017/RDC.2020.41
Reis, 2017, Environmental and vegetation changes in southeastern Amazonia during the late Pleistocene and Holocene, Quat. Int., 449, 83, 10.1016/j.quaint.2017.04.031
Rommerskirchen, 2006, Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes, Org. Geochem., 37, 1303, 10.1016/j.orggeochem.2005.12.013
Roubik, 1991
Sachse, 2012, Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms, Annu. Rev. Earth Planet Sci., 40, 221, 10.1146/annurev-earth-042711-105535
Sage, 2006, Is C4 photosynthesis less phenotypically plastic than C3 photosynthesis?, J. Exp. Bot., 57, 303, 10.1093/jxb/erj040
Sahoo, 2016, Influence of seasonal variation on the hydro-biogeochemical characteristics of two upland lakes in the Southeastern Amazon, Brazil, An Acad. Bras Ciências, 88, 2211, 10.1590/0001-3765201620160354
Sahoo, 2017, Limnological characteristics and planktonic diversity of five tropical upland lakes from Brazilian Amazon, Ann. Limnol. - Int. J. Limnol., 53, 467, 10.1051/limn/2017026
Salati, 1979, Recycling of water in the Amazon Basin: an isotopic study, Water Resour. Res., 15, 1250, 10.1029/WR015i005p01250
Salino, 2018, Ferns and lycophytes from Serra dos Carajás, an eastern Amazonian mountain range, Rodriguesia, 69, 1417, 10.1590/2175-7860201869335
Schaefer, 2015, Solos desenvolvidos sobre canga ferruginosa no Brasil: uma revisão crítica e papel ecológico de termiteiros, 77
Schefuß, 2005, Climatic controls on central African hydrology during the past 20,000 years, Nature, 437, 1003, 10.1038/nature03945
Schefuß, 2011, Forcing of wet phases in southeast Africa over the past 17,000 years, Nature, 480, 509, 10.1038/nature10685
Schnurrenberger, 2003, Classification of lacustrine sediments based on sedimentary components, J. Paleolimnol., 29, 141, 10.1023/A:1023270324800
Sifeddine, 1994, La sédimentation lacustre indicateur de changements des paléoenvironnements au cours des 30000 dernières années (Carajas, Amazonie, Brésil), Compt. Rendus l’Acad. Sci. Paris, 318, 1645
Sifeddine, 2001, Variations of the Amazonian rainforest environment: a sedimentological record covering 30,000 years, Palaeogeogr. Palaeoclimatol. Palaeoecol., 168, 221, 10.1016/S0031-0182(00)00256-X
Silva Júnior, 2017, Estimativa de precipitação e vazões médias para a bacia hidrográfica do rio Itacaiúnas (BHRI), Amazônia Oriental, Brasil (Estimation of Precipitation and average Flows for the Itacaiúnas River Watershed (IRW) - eastern Amazonia, Brazil), Rev. Brasil. Geogr. Física, 10, 1638, 10.26848/rbgf.v.10.5.p1638-1654
Skirycz, 2014, Canga biodiversity, a matter of mining, Front. Plant Sci., 5, 1, 10.3389/fpls.2014.00653
Smith, 2017, Impact of mid- to late Holocene precipitation changes on vegetation across lowland tropical South America: a paleo-data synthesis, Quat. Res., 89, 134, 10.1017/qua.2017.89
Staal, 2018, Forest-rainfall cascades buffer against drought across the Amazon, Nat. Clim. Change, 8, 539, 10.1038/s41558-018-0177-y
Stockmarr, 1971, Tablets with spores used in absolute pollen analysis, Pollen Spores, 13, 615
Stríkis, 2015, Timing and structure of mega-SACZ events during Heinrich Stadial 1, Geophys. Res. Lett., 42, 5477, 10.1002/2015GL064048
Stríkis, 2018, South American monsoon response to iceberg discharge in the North Atlantic, Proc. Natl. Acad. Sci. Unit. States Am., 115, 3788, 10.1073/pnas.1717784115
Stuiver, 1977, Discussion: reporting and calibration of 14C data, Radiocarbon, 19, 355, 10.1017/S0033822200003672
Tavares, 2018, Climate indicators for a watershed in the eastern Amazon, Rev. Brasil. Climatol., 23, 389
Tierney, 2008, Northern hemisphere controls on tropical southeast African climate during the past 60,000 years, Nature, 322, 252
Tierney, 2013, Abrupt shifts in Horn of Africa hydroclimate since the last glacial maximum, Science, 342, 843, 10.1126/science.1240411
Utida, 2019, Tropical South Atlantic influence on Northeastern Brazil precipitation and ITCZ displacement during the past 2300 years, Sci. Rep., 9, 1, 10.1038/s41598-018-38003-6
van Soelen, 2016, A late holocene molecular hydrogen isotope record of the east Asian summer monsoon in southwest Japan, Quat. Res., 86, 287, 10.1016/j.yqres.2016.07.005
Viana, 2016, Flora of the cangas of the Serra dos Carajás, Pará, Brazil: history, study area and methodology, Rodriguesia, 67, 1107, 10.1590/2175-7860201667501
Vogts, 2009, Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species, Org. Geochem., 40, 1037, 10.1016/j.orggeochem.2009.07.011
Vuille, 2003, Modeling δ18O in precipitation over the tropical Americas: 2. Simulation of the stable isotope signal in Andean ice cores, J. Geophys. Res., 27, 1
Vuille, 2005, Stable isotopes in precipitation recording South American summer monsoon and ENSO variability: observations and model results, Clim. Dynam., 25, 401, 10.1007/s00382-005-0049-9
Walker, 1992, Facies models: response to sea level change, Geol. J., 409
Wang, 2007, Millennial-scale precipitation changes in southern Brazil over the past 90,000 years, Geophys. Res. Lett., 34, 1, 10.1029/2007GL031149
Wang, 2017, Hydroclimate changes across the Amazon lowlands over the past 45,000 years, Nature, 541, 204, 10.1038/nature20787
Wang, 2013, What does leaf wax δD from a mixed C3/C4 vegetation region tell us?, Geochem. Cosmochim. Acta, 111, 128, 10.1016/j.gca.2012.10.016
Ward, 2019, Reconstruction of Holocene coupling between the South American Monsoon System and local moisture variability from speleothem δ18O and 87Sr/86Sr records, Quat. Sci. Rev., 210, 51, 10.1016/j.quascirev.2019.02.019
Whitney, 2011, A 45 kyr palaeoclimate record from the lowland interior of tropical South America, Palaeogeogr. Palaeoclimatol. Palaeoecol., 307, 177, 10.1016/j.palaeo.2011.05.012
Wortham, 2017, Assessing response of local moisture conditions in central Brazil to variability in regional monsoon intensity using speleothem 87Sr/86Sr values, Earth Planet Sci. Lett., 463, 310, 10.1016/j.epsl.2017.01.034
Wu, 2017, Altitude effect on leaf wax carbon isotopic composition in humid tropical forests, Geochem. Cosmochim. Acta, 206, 1, 10.1016/j.gca.2017.02.022
Zemp, 2014, On the importance of cascading moisture recycling in South America, Atmos. Chem. Phys., 14, 13337, 10.5194/acp-14-13337-2014
Zhang, 2015, Origin of increased terrigenous supply to the NE south American continental margin during Heinrich Stadial 1 and the younger dryas, Earth Planet Sci. Lett., 432, 493, 10.1016/j.epsl.2015.09.054