Finding relevant semantic association paths through user-specific intermediate entities
Tóm tắt
Semantic Associations are complex relationships between entities over metadata represented in a RDF graph. While searching for complex relationships, it is possible to find too many relationships between entities. Therefore, it is important to locate interesting and meaningful relations and rank them before presenting to the end user. In recent years e-learning systems have become very popular in all fields of higher education. In an e-learning environment, user may expect to search the semantic relationship paths between two concepts or entities. There may be numerous relationships between two entities which involve more intermediate entities. In order to filter the size of results set based on user's relevance, user may introduce one or more known intermediate entities. In this paper, we present a Modified bidirectional Breadth-First-Search algorithm for finding paths between two entities which pass through other intermediate entities and the paths are ranked according to the users' needs. We have evaluated our system through empirical evaluation. We have compared the execution time to discover the paths between entities for our proposed search method and existing method. According to our experiments our proposed algorithm improves search efficiently. The average correlation coefficient between the proposed system ranking and the human ranking is 0.69. It explains that our proposed system ranking is highly correlated with human ranking.
Tài liệu tham khảo
Berners-Lee T, Hendler J, Lassila O: The Semantic Web: a new form of web content that is meaningful to computers will unleash a revolution of new possibilities. Sci Am 2001,285(5):34–43. 10.1038/scientificamerican1101-34
Klasnja-Milicevic A, Vesin B, Ivanovic M, Budimac Z: E-Learning personalization based on hybrid recommendation strategy and learning style identification. Comput Educ 2011, 56: 885–899. 10.1016/j.compedu.2010.11.001
Lassila O, Swick RR: Resource Description Frame work(RDF) Model and syntax specification, W3C Recommendation. 1999. [http://www.w3.org/TR/PR-rdf-syntax/]
Brickley D, Guha RV: Resource Description Framework (RDF) Schema Specification 1.0, W3C Candidate Recommendation. 2000. [http://www.w3.org/TR/rdf-schema/]
Anyanwu K, Sheth A: ρ -Queries: Enabling Querying for Semantic Associations on the Semantic web. In Proc of the 12th International World Wide Web Conference. ACM Press; 2003:690–699.
Anyanwu K, Maduko A, Sheth A: SemRank: Ranking Complex Relationship Search Results on the Semantic Web. In Proc of the 14th International World Wide Web Conference. ACM Press; 2005:117–127.
Jiang X, Tan A: Learning and inferencing in user ontology for personalized Semantic Web search. Inform Sci 2009, 179: 2794–2808. 10.1016/j.ins.2009.04.005
Stojanovic N, Mädche A, Staab S, Studer R: Sure Y, SEAL: a framework for Developing SEmantic PortALs. Proceedings of K-CAP 2001, 155–162.
Shariatmadari S, Mamat A, Ibrahim H, Mustapha N: SwSim: Discovering semantic similarity association in semantic web. Proc of the International Symposium on IT Sim 2008, 1–4.
Sokolsky O, Kannan S, Lee I: Simulation - Based Graph Similarity. Proc of 12th International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer-verlag LNCS 2006, 3920: 426–440.
Aleman-Meza B, Halaschek C, Arpinar IB, Sheth A: Ranking Complex Relationships on the Semantic Web. IEEE Internet computing 2005,9(3):37–44. 10.1109/MIC.2005.63
Lee M, Kim W: Semantic Association Search and Rank Method based on Spreading Activation for the Semantic Web. Proc of IEEE International Conference on Industrial Engineering and Engineering Management 2009, 1523–1527.
Dong X, Ding Y, Wang H, Chen B, Wild DJ: Ranking semantic associations in systems chemical biology space, 19th International World Wide Web Conference. FWCS, Raleigh 2010.
Vidal M, Rashid L, Ibabez L, Rivera J, Rodrogiez H, Ruckhaus E: A Ranking-Based Approach to Discover Semantic Association Between Linked Data. The 2nd International Workshop on Inductive Reasoning and Machine Learning for the Semantic Web 2010, 611: 18–29.
Anderson R, Khattak A: The Use of Information Retrieval Techniques for Intrusion Detection. Proc 1st International Workshop Recent Advances in Intrusion Detection 1998. [http://www.cl.cam.ac.uk/ftp/users/rja14/raid.ps.gz]
Lin S, Chalupsky H: Unsupervised Link Discovery in Multi-Relational Data via Rarity Analysis. In Proc 3rd IEEE Int'l Conf. Data mining. IEEE CS Press; 2003:171–178.
Diaconis P, Graham R: Spearman's Foot rule as a Measure of Disarray. J Royal Statistical Soc, Series B 1977,39(no.2):262–268.