Entropy generation in nanofluid flow due to double diffusive MHD mixed convection
Tài liệu tham khảo
Bejan, 1994
Basak, 2012, Entropy generation during natural convection in a porous cavity: effect of thermal boundary conditions, Numer. Heat Transf., 62, 336, 10.1080/10407782.2012.691059
S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows, in: D.A. Siginer, H.P. Wang (Eds.), FED—vol. 231/MD—vol. 66, The American Society of Mechanical Engineers, New York, vol. 21, 1995, pp. 99–105.
Buongiorno, 2006, Convective transport in nanofluids, ASME J. Heat Transf., 128, 240, 10.1115/1.2150834
Das, 2007
Wen, 2007, Review of nanofluids for heat transfer applications, Particuology, 7, 141, 10.1016/j.partic.2009.01.007
Mahian, 2013, A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Transf., 52, 582, 10.1016/j.ijheatmasstransfer.2012.10.037
Nayak, 2018, Effects of nanoparticles dispersion on the mixed convection of a nanofluid in a skewed enclosure, Int. J. Heat Mass Transf., 125, 908, 10.1016/j.ijheatmasstransfer.2018.04.088
Firouzfar, 2011, Application of heat pipe heat exchangers in heating, ventilation and air conditioning (HVAC) systems, Sci. Res. Essays, 6, 1900
Hooman, 2010, Porous medium modeling of air - cooled condensers, Transp. Porous Media, 84, 257, 10.1007/s11242-009-9497-8
Targui, 2008, Analysis of fluid flow and heat transfer in a double pipe heat exchanger with porous structures, Energy Convers. Manag., 49, 3217, 10.1016/j.enconman.2008.02.010
Pilkington, 1969, Review lecture: the float glass process, Proc. R. Soc. Lond. A, 314, 1, 10.1098/rspa.1969.0212
Ideriah, 1980, Prediction of turbulent cavity flow driven by buoyancy and shear, J. Mech. Eng. Sci., 22, 287, 10.1243/JMES_JOUR_1980_022_054_02
Cha, 1984, Recirculating mixed convection flow for energy extraction, Int. J. Heat Mass Transf., 27, 1801, 10.1016/0017-9310(84)90162-5
Fang, 1996, Dynamics of heat exchange between sediment and water in a lake, Water Resour. Res., 32, 1719, 10.1029/96WR00274
Khorasanizadeh, 2013, Entropy generation of Cu–water nanofluid mixed convection in a cavity, Eur. J. Mech. B, Fluids, 37, 143, 10.1016/j.euromechflu.2012.09.002
Nayak, 2015, Numerical study on mixed convection and entropy generation of Cu–water nanofluid in a differentially heated skewed enclosure, Int. J. Heat Mass Transf., 85, 620, 10.1016/j.ijheatmasstransfer.2015.01.116
Elshehabey, 2015, MHD mixed convection in a lid-driven cavity filled by a nanofluid with sinusoidal temperature distribution on the both vertical walls using Buongiorno's nanofluid model, Int. J. Heat Mass Transf., 88, 181, 10.1016/j.ijheatmasstransfer.2015.04.039
Abu-Nada, 2010, Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid, Eur. J. Mech. B, Fluids, 29, 472, 10.1016/j.euromechflu.2010.06.008
Waheed, 2009, Mixed convective heat transfer in rectangular enclosures driven by a continuously moving horizontal plate, Int. J. Heat Mass Transf., 52, 5055, 10.1016/j.ijheatmasstransfer.2009.05.011
Hussein, 2020, Mixed convection in a trapezoidal enclosure filled with two layers of nanofluid and porous media with a rotating circular cylinder and a sinusoidal bottom wall, J. Therm. Anal. Calorim., 141, 2061, 10.1007/s10973-019-08963-6
Parveen, 2019, Numerical simulation of MHD double diffusive natural convection and entropy generation in a wavy enclosure filled with nanofluid with discrete heating, Heliyon, 5, 10.1016/j.heliyon.2019.e02496
Chamkha, 2020, Effects of a rotating cone on the mixed convection in a double lid-driven 3D porous trapezoidal nanofluid filled cavity under the impact of magnetic field, Nanomaterials, 10, 449, 10.3390/nano10030449
Cimpean, 2020, Mixed convection of hybrid nanofluid in a porous trapezoidal chamber, Int. Commun. Heat Mass Transf., 116, 10.1016/j.icheatmasstransfer.2020.104627
Xuan, 2000, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transf., 43, 3701, 10.1016/S0017-9310(99)00369-5
Abu-Nada, 2008, Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids, Int. Commun. Heat Mass Transf., 35, 657, 10.1016/j.icheatmasstransfer.2007.11.004
Maxwell-Garnett, 1904, Colours in metal glasses and in metallic films, Philos. Trans. R. Soc. Ser. A, 203, 385
Brinkman, 1952, The viscosity of concentrated suspensions and solution, J. Chem. Phys., 20, 571, 10.1063/1.1700493
Shercliff, 1965
Bejan, 1996
Bejan, 1979, A study of entropy generation in fundamental convective heat transfer, ASME J. Heat Transf., 101, 718, 10.1115/1.3451063
Mahapatra, 2019, Heatline and massline analysis due to magnetohydrodynamic double diffusive natural convection in a trapezoidal enclosure with various aspect ratios, Int. J. Appl. Comput. Math., 5, 10.1007/s40819-019-0657-4
Mahapatra, 2018, Magnetohydrodynamic double - diffusive natural convection for nanofluid within a trapezoidal enclosure, Comput. Appl. Math., 37, 6132, 10.1007/s40314-018-0676-5
Gupta, 2005, A new paradigm for solving Navier-Stokes equations: streamfunction - velocity formulation, J. Comput. Phys., 207, 52, 10.1016/j.jcp.2005.01.002
Ghasemi, 2011, Magnetic field effect on natural convection in a nanofluid-filled square enclosure, Int. J. Therm. Sci., 50, 1748, 10.1016/j.ijthermalsci.2011.04.010