Oligomerization and nanocluster organization render specificity

Biological Reviews - Tập 90 Số 2 - Trang 587-598 - 2015
Ruth Nussinov1,2, Hyunbum Jang1, Chung‐Jung Tsai1
1Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A.
2Department of Human Genetics and Molecular Medicine, Sackler Institute of Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

Tóm tắt

ABSTRACT

Nanoclusters are anchored to membranes, either within them or in the cytoplasm latched onto the cytoskeleton, whose reorganization can regulate their activity. Nanoclusters have been viewed in terms of cooperativity and activation; here we perceive nanocluster organization from a conformational standpoint. This leads us to suggest that while single molecules encode activity, nanoclusters induce specificity, and that this is their main evolutionary aim. Distinct, isoform‐specific nanocluster organization can drive the preferred effector (and ligand) interactions and thereby designate signalling pathways. The absence of detailed structural information across the nanocluster, due to size and dynamics, hinders an in‐depth grasp of its mechanistic features; however, available data already capture some of the principles and their functional ‘raison d'être’. Collectively, clustering lends stability and reduces the likelihood of proteolytic cleavage; it also increases the effective local concentration and enables efficient cooperative activation. However, clustering does not determine the ability of the single molecule to function. Drugs targeting nanoclusters can attenuate activity by hampering cooperativity; however, this may not perturb activation and signalling, which originate from the molecules themselves, and as such, are likely to endure. What then is the major role of nanoclustering? Assuming that single molecules evolved first, with a subsequent increase in cellular complexity and emergence of highly similar isoform variants, evolution faced the threat of signalling promiscuity. We reason that this potential risk was thwarted by oligomerization and clustering; clustering confers higher specificity, and a concomitant extra layer of cellular control. In our Ras example, signalling will be more accurate as a dimer than as a monomer, where its isomer specificity could be compromised.

Từ khóa


Tài liệu tham khảo

10.1016/j.semcdb.2007.08.003

10.1073/pnas.0903907107

10.1038/emboj.2008.10

10.1038/nrn2059

10.1101/cshperspect.a005512

10.1091/mbc.E07-10-1053

10.1038/emboj.2010.175

10.3389/fimmu.2012.00115

10.1016/j.str.2009.07.018

10.1146/annurev.biophys.27.1.59

10.1038/30018

10.1242/jcs.061739

10.1038/nsmb.2654

10.1093/glycob/cwq144

10.1146/annurev.immunol.18.1.393

10.1126/scisignal.2003124

10.3389/fimmu.2012.00155

10.1126/science.1749933

Ghosh S., 1996, Raf‐1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf‐1 in 12‐O‐tetradecanoylphorbol‐13‐acetate‐stimulated Madin‐Darby canine kidney cells, The Journal of Biological Chemistry, 271, 8472, 10.1074/jbc.271.14.8472

Ghosh S., 1994, The cysteine‐rich region of raf‐1 kinase contains zinc, translocates to liposomes, and is adjacent to a segment that binds GTP‐ras, The Journal of Biological Chemistry, 269, 10000, 10.1016/S0021-9258(17)36981-8

10.1021/jm061053f

10.1016/j.bpj.2012.08.043

10.1038/nrm1105

10.1016/j.tcb.2008.05.006

10.1080/09687680802649582

10.1523/JNEUROSCI.23-08-03262.2003

10.1038/414933a

10.1016/j.ceb.2007.08.004

10.1073/pnas.1004148107

10.1074/jbc.275.6.3737

10.1007/s00249-012-0841-5

10.1016/j.coph.2010.09.002

10.1038/nrm2438

10.1146/annurev-pharmtox-032112-135923

10.1038/nrm2901

Klammt C., 2012, How membrane structures control T cell signaling, Frontiers in Immunology, 3, 291(9)

10.1242/dev.074997

10.1074/jbc.M111.309799

10.1146/annurev.biophys.34.040204.144637

10.1038/480329a

10.1038/nchembio.1257

10.1074/jbc.M607711200

10.1039/c3sm51388b

10.1126/science.1219218

10.1016/j.str.2011.06.002

10.1021/bi101972y

10.4049/jimmunol.1102439

10.1038/nrm2883

10.1016/j.immuni.2012.11.019

10.1021/ja312508w

10.1038/nri1808

10.1021/ja055779x

10.1016/j.bbapap.2013.04.020

10.1088/1478-3975/10/4/045004

10.1186/1741-7007-10-2

10.1016/j.bbapap.2012.12.014

10.1016/j.str.2013.06.002

10.1146/annurev-biophys-083012-130257

10.1016/j.chembiol.2013.12.015

10.1016/j.tibs.2012.07.001

10.1016/j.bbamem.2012.04.010

10.1111/j.1742-4658.2009.06928.x

10.4049/jimmunol.1201292

10.1128/MCB.00050-08

10.1073/pnas.0504114102

10.1038/nature10662

10.1083/jcb.200209091

10.1038/42500

10.1038/ni.2488

10.1038/nsmb.2617

10.1021/jp3077886

10.1038/35036052

10.1124/pr.110.002667

10.1016/j.str.2009.06.008

10.1016/j.cell.2009.08.041

10.1242/jcs.098947

10.1038/ncb1615

10.1016/j.coi.2010.03.009

10.1016/j.semcancer.2013.04.001

10.1039/b819720b

10.1007/s00018-010-0520-6

10.1021/ja107532q

10.1021/ja305518h

10.1016/j.cellsig.2011.12.005

10.1074/jbc.273.37.24052

10.1016/j.cell.2006.05.013