Elevated NEFA levels impair glucose effectiveness by increasing net hepatic glycogenolysis

Springer Science and Business Media LLC - Tập 55 Số 11 - Trang 3021-3028 - 2012
Sylvia Kehlenbrink1, Sudha Koppaka1, M. Martin1, Rachna Relwani1, Min Cui1, Jong Hee Hwang1, Y. Li1, Rita Basu2, Meredith Hawkins1, Preeti Kishore3
1Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
2Division of Endocrinology, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
3Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, NY, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bogardus C, Lillioja S, Howard BV, Reaven G, Mott D (1984) Relationships between insulin secretion, insulin action, and fasting plasma glucose concentration in nondiabetic and noninsulin-dependent diabetic subjects. J Clin Invest 74:1238–1246

DeFronzo RA (1988) Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37:667–687

Nagasaka S, Tokuyama K, Kusaka I et al (1999) Endogenous glucose production and glucose effectiveness in type 2 diabetic subjects derived from stable-labeled minimal model approach. Diabetes 48:1054–1060

Hawkins M, Gabriely I, Wozniak R, Reddy K, Rossetti L, Shamoon H (2002) Glycemic control determines hepatic and peripheral glucose effectiveness in type 2 diabetic subjects. Diabetes 51:2179–2189

Mevorach M, Giacca A, Aharon Y, Hawkins M, Shamoon H, Rossetti L (1998) Regulation of endogenous glucose production by glucose per se is impaired in type 2 diabetes mellitus. J Clin Invest 102:744–753

Nielsen MF, Basu R, Wise S, Caumo A, Cobelli C, Rizza RA (1998) Normal glucose-induced suppression of glucose production but impaired stimulation of glucose disposal in type 2 diabetes: evidence for a concentration-dependent defect in uptake. Diabetes 47:1735–1747

Antras-Ferry J, Le Bigot G, Robin P, Robin D, Forest C (1994) Stimulation of phosphoenolpyruvate carboxykinase gene expression by fatty acids. Biochem Biophys Res Commun 203:385–391

Williamson JR, Kreisberg RA, Felts PW (1966) Mechanism for the stimulation of gluconeogenesis by fatty acids in perfused rat liver. Proc Natl Acad Sci U S A 56:247–254

Kehlenbrink S, Tonelli J, Koppaka S, Chandramouli V, Hawkins M, Kishore P (2009) Inhibiting gluconeogenesis prevents fatty acid-induced increases in endogenous glucose production. Am J Physiol Endocrinol Metab 297:E165–E173

Kishore P, Tonelli J, Koppaka S et al (2006) Time-dependent effects of free fatty acids on glucose effectiveness in type 2 diabetes. Diabetes 55:1761–1768

Hawkins M, Tonelli J, Kishore P et al (2003) Contribution of elevated free fatty acid levels to the lack of glucose effectiveness in type 2 diabetes. Diabetes 52:2748–2758

Kishore P, Li W, Tonelli J, et al (2010) Adipocyte-derived factors potentiate nutrient-induced production of plasminogen activator inhibitor-1 by macrophages. Sci Transl Med 2: 20ra15

Finegood DT, Bergman RN, Vranic M (1987) Estimation of endogenous glucose production during hyperinsulinemic-euglycemic glucose clamps. Comparison of unlabeled and labeled exogenous glucose infusates. Diabetes 36:914–924

Balent B, Goswami G, Goodloe G et al (2002) Acute elevation of NEFA causes hyperinsulinemia without effect on insulin secretion rate in healthy human subjects. Ann N Y Acad Sci 967:535–543

Brooker HR, Mareci TH, Mao JT (1987) Selective Fourier transform localization. Magn Reson Med 5:417–433

Rossetti L, Chen W, Hu M, Hawkins M, Barzilai N, Efrat S (1997) Abnormal regulation of HGP by hyperglycemia in mice with a disrupted glucokinase allele. Am J Physiol 273:E743–E750

Hovorka R, Jayatillake H, Rogatsky E, Tomuta V, Hovorka T, Stein DT (2007) Calculating glucose fluxes during meal tolerance test: a new computational approach. Am J Physiol Endocrinol Metab 293:E610–E619

Basu R, Barosa C, Basu A et al (2011) Transaldolase exchange and its effects on measurements of gluconeogenesis in humans. Am J Physiol Endocrinol Metab 300:E296–E303

Landau BR, Wahren J, Chandramouli V, Schumann WC, Ekberg K, Kalhan SC (1996) Contributions of gluconeogenesis to glucose production in the fasted state. J Clin Invest 98:378–385

Kishore P, Boucai L, Zhang K et al (2011) Activation of KATP channels suppresses glucose production in humans. J Clin Invest 121:4916–4920

Sikuler E, Polio J, Groszmann RJ, Hendler R (1987) Glucagon and insulin metabolism in a portal-hypertensive rat model. Am J Physiol 253:G110–G115

Jenssen T, Nurjhan N, Consoli A, Gerich JE (1990) Failure of substrate-induced gluconeogenesis to increase overall glucose appearance in normal humans. Demonstration of hepatic autoregulation without a change in plasma glucose concentration. J Clin Invest 86:489–497

Petersen KF, Laurent D, Rothman DL, Cline GW, Shulman GI (1998) Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J Clin Invest 101:1203–1209

Rossetti L, Giaccari A, Barzilai N, Howard K, Sebel G, Hu M (1993) Mechanism by which hyperglycemia inhibits hepatic glucose production in conscious rats. Implications for the pathophysiology of fasting hyperglycemia in diabetes. J Clin Invest 92:1126–1134

Sindelar DK, Chu CA, Venson P, Donahue EP, Neal DW, Cherrington AD (1998) Basal hepatic glucose production is regulated by the portal vein insulin concentration. Diabetes 47:523–529

Aiston S, Andersen B, Agius L (2003) Glucose 6-phosphate regulates hepatic glycogenolysis through inactivation of phosphorylase. Diabetes 52:1333–1339

Reaven GM, Hollenbeck C, Jeng CY, Wu MS, Chen YD (1988) Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes 37:1020–1024

van de Werve G, Lange A, Newgard C, Mechin MC, Li Y, Berteloot A (2000) New lessons in the regulation of glucose metabolism taught by the glucose 6-phosphatase system. Eur J Biochem 267:1533–1549

Lam TK, van de Werve G, Giacca A (2003) Free fatty acids increase basal hepatic glucose production and induce hepatic insulin resistance at different sites. Am J Physiol Endocrinol Metab 284:E281–E290

Oakes ND, Cooney GJ, Camilleri S, Chisholm DJ, Kraegen EW (1997) Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding. Diabetes 46:1768–1774

Roden M, Stingl H, Chandramouli V et al (2000) Effects of free fatty acid elevation on postabsorptive endogenous glucose production and gluconeogenesis in humans. Diabetes 49:701–707

Stingl H, Krššák M, Krebs M et al (2001) Lipid-dependent control of hepatic glycogen stores in healthy humans. Diabetologia 44:48–54

Boden G, Chen X, Capulong E, Mozzoli M (2001) Effects of free fatty acids on gluconeogenesis and autoregulation of glucose production in type 2 diabetes. Diabetes 50:810–816

Shah P, Vella A, Basu A et al (2003) Elevated free fatty acids impair glucose metabolism in women. Diabetes 52:38–42

DeFronzo RA, Abdul-Ghani MA (2011) Preservation of beta-cell function: the key to diabetes prevention. J Clin Endocrinol Metab 96:2354–2366

Krssak M, Brehm A, Bernroider E et al (2004) Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes 53:3048–3056

Kacerovsky M, Jones J, Schmid AI et al (2011) Postprandial and fasting hepatic glucose fluxes in long-standing type 1 diabetes. Diabetes 60:1752–1758

Cline GW, Rothman DL, Magnusson I, Katz LD, Shulman GI (1994) 13C-nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with insulin-dependent diabetes mellitus. J Clin Invest 94:2369–2376

Hwang JH, Perseghin G, Rothman DL et al (1995) Impaired net hepatic glycogen synthesis in insulin-dependent diabetic subjects during mixed meal ingestion. A 13C nuclear magnetic resonance spectroscopy study. J Clin Invest 95:783–787

Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG (1990) Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 322:223–228

Agius L (2008) Glucokinase and molecular aspects of liver glycogen metabolism. Biochem J 414:1–18

Agius L, Peak M, Newgard CB, Gomez-Foix AM, Guinovart JJ (1996) Evidence for a role of glucose-induced translocation of glucokinase in the control of hepatic glycogen synthesis. J Biol Chem 271:30479–30486

Clore JN, Stillman J, Sugerman H (2000) Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes. Diabetes 49:969–974

Caro JF, Triester S, Patel VK, Tapscott EB, Frazier NL, Dohm GL (1995) Liver glucokinase: decreased activity in patients with type II diabetes. Horm Metab Res 27:19–22

Seoane J, Gomez-Foix AM, O’Doherty RM, Gomez-Ara C, Newgard CB, Guinovart JJ (1996) Glucose 6-phosphate produced by glucokinase, but not hexokinase I, promotes the activation of hepatic glycogen synthase. J Biol Chem 271:23756–23760