Developmental fates of shark head cavities reveal mesodermal contributions to tendon progenitor cells in extraocular muscles
Tóm tắt
Vertebrate extraocular muscles (EOMs) function in eye movements. The EOMs of modern jawed vertebrates consist primarily of four recti and two oblique muscles innervated by three cranial nerves. The developmental mechanisms underlying the establishment of this complex and the evolutionarily conserved pattern of EOMs are unknown. Chondrichthyan early embryos develop three pairs of overt epithelial coeloms called head cavities (HCs) in the head mesoderm, and each HC is believed to differentiate into a discrete subset of EOMs. However, no direct evidence of these cell fates has been provided due to the technical difficulty of lineage tracing experiments in chondrichthyans. Here, we set up an in ovo manipulation system for embryos of the cloudy catshark Scyliorhinus torazame and labeled the epithelial cells of each HC with lipophilic fluorescent dyes. This experimental system allowed us to trace the cell lineage of EOMs with the highest degree of detail and reproducibility to date. We confirmed that the HCs are indeed primordia of EOMs but showed that the morphological pattern of shark EOMs is not solely dependent on the early pattern of the head mesoderm, which transiently appears as tripartite HCs along the simple anteroposterior axis. Moreover, we found that one of the HCs gives rise to tendon progenitor cells of the EOMs, which is an exceptional condition in our previous understanding of head muscles; the tendons associated with head muscles have generally been supposed to be derived from cranial neural crest (CNC) cells, another source of vertebrate head mesenchyme. Based on interspecies comparisons, the developmental environment is suggested to be significantly different between the two ends of the rectus muscles, and this difference is suggested to be evolutionarily conserved in jawed vertebrates. We propose that the mesenchymal interface (head mesoderm vs CNC) in the environment of developing EOM is required to determine the processes of the proximodistal axis of rectus components of EOMs.
Tài liệu tham khảo
Goodrich ES. Studies on the structure and development of vertebrates. London: McMillan; 1930.
Bothe I, Dietrich S. The molecular setup of the avian head mesoderm and its implication for craniofacial myogenesis. Dev Dyn. 2006;235(10):2845–60.
Kuratani S. Craniofacial development and the evolution of the vertebrates: the old problems on a new background. Zool Sci. 2005;22(1):1–19.
Noden DM. The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am J Anat. 1983;168:257–76.
Kuratani S, Horigome N. Developmental morphology of branchiomeric nerves in a cat shark, Scyliorhinus torazame, with special reference to rhombomeres, cephalic mesoderm, and distribution patterns of cephalic crest cells. Zool Sci. 2000;17(7):893–910.
Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development. 2010;137(16):2605–21.
Kuratani S, Adachi N, Wada N, Oisi Y, Sugahara F. Developmental and evolutionary significance of the mandibular arch and prechordal/premandibular cranium in vertebrates: revising the heterotopy scenario of gnathostome jaw evolution. J Anat. 2013;222(1):41–55.
Kuratani S, Adachi N. What are head cavities? — a history of studies on vertebrate head segmentation. Zool Sci. 2016;33(3):213–28.
Gilbert PW. The origin and development of the head cavities in the human embryo. J Morphol. 1952;90:149–87.
Wedin B. The anterior mesoblast in some lower vertebrates-A comparative study of the ontogenetic development of the anerior mesoblast in Petromyzon, Etmopterus, Torpedo, et al. Lund: Hakan Ohlsson Boktryckeri; 1949.
Jarvik E. Basic structure and evolution of vertebrates, vol. 1. New York: Academic Press; 1980.
Adachi N, Kuratani S. Development of head and trunk mesoderm in the dogfish, Scyliorhinus torazame: I. embryology and morphology of the head cavities and related structures. Evol Dev. 2012;14(3):234–56.
Balfour FM. A monograph on the developmnet of elasmobranch fishes. MacMillan; 1878.
Platt JB. A contribution to the morphology of the vertebrate head, based on a study of Acanthias vulgaris. J Morphol. 1891;5:79–106.
Neal HV. The history of the eye muscles. J Morphol. 1918;30:433–53.
Goodrich ES. On the developmnet of the segments of the head in Scyllium. Quart J micr Sci. 1918;63:1–30.
van Wijhe JW. Über die Mesodermsegmente und die Entwicklung der Nerven des Selachierkopfes. Verh Kon Akad Wetensch Amsterdam. 1882;22:1–50.
Kuratani S, Ahlberg PE. Evolution of the vertebrate neurocranium: problems of the premandibular domain and the origin of the trabecula. Zool Lett. 2018;4(1):1.
Bertmar G. On the ontogeny of the chondral skull in Characidae, with a discussion on the chondrocranial base and the visceral chondrocranium in fishes. Acta Zool. 1959;40(2–3):203–364.
Jollie M. Segmentation of the vertebrate head. Am Zool. 1977;17:323–33.
Kuratani S, Horigome N, Hirano S. Developmental morphology of the head mesoderm and reevaluation of segmental theories of the vertebrate head: evidence from embryos of an agnathan vertebrate, Lampetra japonica. Dev Biol. 1999;210(2):381–400.
Adelmann HB. The development of the eye muscles of the chick. J Morphol Physiol. 1927;44(1):29–87.
Tanaka S. Notes on some japanese fishes, with descriptions of fourteen new species. Journ Coll Sci Imp Univ Tokyo. 1908;23:1–55.
Ballard WW, Mellinger J, Leichenault H. A series of normal stages for development of Scyliorhinus canicula, the lesser spotted dogfish (Chondrichthyes: Scyliorhinidae). J Exp Zool. 1993;267:318–36.
Hara Y, Yamaguchi K, Onimaru K, Kadota M, Koyanagi M, Keeley SD, Tatsumi K, Tanaka K, Motone F, Kageyama Y, Nozu R, Adachi N, Nishimura O, Nakagawa R, Tanegashima C, Kiyatake I, Matsumoto R, Murakumo K, Nishida K, Terakita A, Kuratani S, Sato K, Hyodo S, Kuraku S. Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat Ecol Evol. 2018;2(11):1761–71.
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.
Sánchez R, Serra F, Tárraga J, Medina I, Carbonell J, Pulido L, de María A, Capella-Gutíerrez S, Huerta-Cepas J, Gabaldón T, Dopazo J, Dopazo H. Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. Nucleic Acids Res. 2011;39(suppl_2):W470–4.
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21.
Minarik M, Stundl J, Fabian P, Jandzik D, Metscher BD, Psenicka M, Gela D, Osorio-Perez A, Arias-Rodriguez L, Horacek I, Cerny R. Pre-oral gut contributes to facial structures in non-teleost fishes. Nature. 2017;547(7662):209–12.
Sugahara F, Murakami Y, Kuratani S. Gene expression analysis of lamprey embryos. In: Hauptmann G, editor. In Situ Hybridization Methods. New York: Springer New York; 2015. p. 263–78.
Bevilaqua M. Guide to image editing and production of figures for scientific publications with an emphasis on taxonomy image editing for scientific publications. Zoosystematics Evol. 2020;96:139.
Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, Lassar A, Tabin CJ. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development. 2001;128(19):3855–66.
Bonnin M-A, Laclef C, Blaise R, Eloy-Trinquet S, Relaix F, Maire P, Duprez D. Six1 is not involved in limb tendon development, but is expressed in limb connective tissue under Shh regulation. Mech Dev. 2005;122(4):573–85.
Chen JW, Galloway JL. The development of zebrafish tendon and ligament progenitors. Development. 2014;141(10):2035–45.
De Beer GR. The development of the vertebrate skull. London: Oxford University press; 1937.
Holmgren N. Studies on the head in fishes - embrological, morphological, and phylogenetical researches. PartI: development of the skull in sharks and rays. Acta Zool. 1940;21:51–267.
Marshall AM. On the head cavities and associated nerves of elasmobranchs. Quart J micr Sci. 1881;21:72–97.
Dohrn A. Studien zur Urgeschichte des Wirbelthierkörpers. Mittheilungen aus der Zoologischen Station yu Neapel. 1904;17:1–294.
De Beer GR. Memoirs: The prootic somites of heterodontus and of amia. Quart J Micro Sci. 1924;s2–68(269):17–38.
Brent AE, Schweitzer R, Tabin CJ. A somitic compartment of tendon progenitors. Cell. 2003;113:235–48.
Dietrich S, Schubert FR, Healy C, Sharpe PT, Lumsden A. Specification of the hypaxial musculature. Development. 1998;125(12):2235–49.
Nassari S, Duprez D, Fournier-Thibault C. Non-myogenic contribution to muscle development and homeostasis: the role of connective tissues. Front Cell Dev Biol. 2017;5:22.
Couly GF, Coltey PM, Le Douarin NM. The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development. 1993;117:409–29.
Platt JB. Ectodermic origin of the cartilage of the head. Anat Anz. 1893;8:506–9.
Noden DM. Interactions and fates of avian craniofacial mesenchyme. Development. 1988;103(Supplement):121–40.
Borue X, Noden DM. Normal and aberrant craniofacial myogenesis by grafted trunk somitic and segmental plate mesoderm. Development. 2004;131(16):3967–80.
Noden DM. Patterning of avian craniofacial muscles. Dev Biol. 1986;116:347–56.
Grenier J, Teillet MA, Grifone R, Kelly RG, Duprez D. Relationship between neural crest cells and cranial mesoderm during head muscle development. PLoS One. 2009;4(2):e4381.
Tokita M, Schneider RA. Developmental origins of species-specific muscle pattern. Dev Biol. 2009;331(2):311–25.
Noden DM, Francis-West P. The differentiation and morphogenesis of craniofacial muscles. Dev Dyn. 2006;235(5):1194–218.
Noden DM. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol. 1983;96(1):144–65.
Wachtler F, Jacob M. Origin and development of the cranial skeletal muscles. Bibl Anat. 1986;29:24–46.
Mootoosamy RC, Dietrich S. Distinct regulatory cascades for head and trunk myogenesis. Development. 2002;129(3):573–83.
Sefton EM, Kardon G. Chapter Five - Connecting muscle development, birth defects, and evolution: an essential role for muscle connective tissue. In: Wellik DM, editor. Current Topics in Developmental Biology, vol. 132. United States: Academic Press; 2019. p. 137–76.
Heude E, Bellessort B, Fontaine A, Hamazaki M, Treier A, Treier M, Levi G, Narboux-Nême N. Etiology of craniofacial malformations in mouse models of blepharophimosis, ptosis and epicanthus inversus syndrome. Hum Mol Genet. 2015;24(6):1670–81.
McBratney-Owen B, Iseki S, Bamforth SD, Olsen BR, Morriss-Kay GM. Development and tissue origins of the mammalian cranial base. Dev Biol. 2008;322(1):121–32.
Chawla B, Schley E, Williams AL, Bohnsack BL. Retinoic acid and Pitx2 regulate early neural crest survival and migration in craniofacial and ocular development. Birth Defects Res B Dev Reprod Toxicol. 2016;107(3):126–35.
Creuzet S, Vincent C, Couly G. Neural crest derivatives in ocular and periocular structures. Int J Dev Bio. 2005;19(2–3):161–71.
Heude E, Tesarova M, Sefton EM, Jullian E, Adachi N, Grimaldi A, Zikmund T, Kaiser J, Kardon G, Kelly RG, Tajbakhsh S. Unique morphogenetic signatures define mammalian neck muscles and associated connective tissues. eLife. 2018;7:e40179.
Adachi N, Bilio M, Baldini A, Kelly RG. Cardiopharyngeal mesoderm origins of musculoskeletal and connective tissues in the mammalian pharynx. Development. 2020;147(3):dev185256.
Sleight VA, Gillis JA. Embryonic origin and serial homology of gill arches and paired fins in the skate, Leucoraja erinacea. eLife. 2020;9:e60635.
Matsuoka T, Ahlberg PE, Kessaris N, Iannarelli P, Dennehy U, Richardson WD, McMahon AP, Koentges G. Neural crest origins of the neck and shoulder. Nature. 2005;436(7049):347–55.
Sefton EM, Piekarski N, Hanken J. Dual embryonic origin and patterning of the pharyngeal skeleton in the axolotl (Ambystoma mexicanum). Evol Dev. 2015;17(3):175–84.
Teng CS, Cavin L, Maxson REJ, Sánchez-Villagra MR, Crump JG. Resolving homology in the face of shifting germ layer origins: lessons from a major skull vault boundary. eLife. 2019;8:e52814.
