Antidepressant-like effects of acute and chronic treatment with zinc in forced swim test and olfactory bulbectomy model in rats

Brain Research Bulletin - Tập 61 - Trang 159-164 - 2003
Gabriel Nowak1,2, Bernadeta Szewczyk1, Joanna M. Wieronska1, Piotr Branski1, Agnieszka Palucha1, Andrzej Pilc1,3, Krystyna Sadlik4, Wojciech Piekoszewski4,5
1Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Krakow, Poland
2Department of Pharmacobiology, Collegium Medicum, Jagiellonian University, Krakow, Poland
3Department of Drug Management, Collegium Medicum, Jagiellonian University, Krakow, Poland
4Institute of Forensic Research, Krakow, Poland
5Department of Clinical and Industrial Toxicology, Collegium Medicum, Jagiellonian University, Krakow, Poland

Tài liệu tham khảo

Broekkamp, 1980, Serotonin-mimetic and antidepressant drugs on passive avoidance learning by olfactory bulbectomised rats, Pharmacol. Biochem. Behav., 13, 643, 10.1016/0091-3057(80)90006-4 Cairncross, 1979, Olfactory projection systems, drugs and behaviour: a review, Psychoneuroendocrinology, 4, 253, 10.1016/0306-4530(79)90009-X Dingledine, 1999, The glutamate receptor ion channels, Pharmacol. Rev., 51, 7 Harrison, 1994, Zn2+: an endogenous modulator of ligand- and voltage-gated ion channels, Neuropharmacology, 33, 935, 10.1016/0028-3908(94)90152-X L.E. Hollister, J.G. Csernansky, Clinical Pharmacology of Psychotherapeutic Drugs, 3rd ed., Churchill Livingstone, New York, 1990. Joly, 1986, The effects of fluoxetine and zimeldine on the behavior of olfactory bulbectomized rats, Pharmacol. Biochem. Behav., 24, 199, 10.1016/0091-3057(86)90338-2 Kroczka, 2001, Antidepressant-like properties of zinc in rodent forced swim test, Brain Res. Bull., 55, 297, 10.1016/S0361-9230(01)00473-7 Kroczka, 2000, Zinc exhibits an antidepressant-like effect in the forced swimming test in mice, Pol. J. Pharmacol., 52, 403 Layer, 1995, Antidepressant-like actions of the polyamine site NMDA antagonist, eliprodil (SL-82.0715), Pharmacol. Biochem. Behav., 52, 621, 10.1016/0091-3057(95)00155-P Maes, 1994, Hypozincemia in depression, J. Affect. Disord., 31, 135, 10.1016/0165-0327(94)90117-1 Maes, 1997, Lower serum zinc in major depression is a sensitive marker of treatment resistance and of the immune/inflammatory response in that illness, Biol. Psychiatry, 42, 349, 10.1016/S0006-3223(96)00365-4 Maj, 1994, Some central effects of kynurenic acid, 7-chlorokynurenic acid and 5,7-dichloro-kynurenic acid, glycine site antagonists, Pol. J. Pharmacol., 46, 115 Maj, 1992, Effects of MK-801 and antidepressant drugs in the forced swimming test in rats, Eur. Neuropsychopharmacol., 2, 37, 10.1016/0924-977X(92)90034-6 Maj, 1992, The effect of CGP 37849 and CGP 39551, competitive NMDA receptor, antagonists in the forced swimming test, Pol. J. Pharmacol. Pharm., 44, 337 McLoughlin, 1990, Zinc in depressive disorder, Acta Psychiatr. Scand., 82, 451, 10.1111/j.1600-0447.1990.tb03077.x Moryl, 1993, Potential antidepressive properties of amantadine, memantine and bifemelane, Pharmacol. Toxicol., 72, 394, 10.1111/j.1600-0773.1993.tb01351.x Nowak, 1998, Adaptation of cortical NMDA receptors by chronic treatment with specific serotonin reuptake inhibitors, Eur. J. Pharmacol., 342, 367, 10.1016/S0014-2999(97)01589-6 Nowak, 1996, Adaptation of cortical but not hippocampal NMDA receptors after chronic citalopram treatment, Eur. J. Pharmacol., 295, 75, 10.1016/0014-2999(95)00585-4 Nowak, 1999, Alterations in serum and brain trace element levels after antidepressant treatment: Part I. Zinc, Biol. Trace Elem. Res., 67, 85, 10.1007/BF02784278 Nowak, 2002, Mechanisms contributing to antidepressant zinc actions, Pol. J. Pharmacol., 54, 587 Nowak, 1993, Adaptive changes in the N-methyl-d-aspartate receptor complex after chronic treatment with imipramine and 1-aminocyclopropanecarboxylic acid, J. Pharmacol. Exp. Ther., 265, 1380 Nowak, 1999, Serum trace elements in animal models and human depression. Part I. Zinc, Hum. Psychopharmacol. Clin. Exp., 14, 83, 10.1002/(SICI)1099-1077(199903)14:2<83::AID-HUP74>3.0.CO;2-6 Ossowska, 1997, The effect of NMDA antagonists on footshock-induced fighting behavior in chronically stressed rats, J. Physiol. Pharmacol., 48, 127 Papp, 1994, Antidepressant activity of non-competitive and competitive NMDA receptor antagonists in a chronic mild stress model of depression, Eur. J. Pharmacol., 263, 1, 10.1016/0014-2999(94)90516-9 Papp, 1996, Antidepressant-like effects of 1-aminocyclopropanecarboxylic acid and d-cycloserine in an animal model of depression, Eur. J. Pharmacol., 316, 145, 10.1016/S0014-2999(96)00675-9 Paul, 1993, Adaptation of the NMDA receptor in rat cortex following chronic electroconvulsive shock or imipramine, Eur. J. Pharmacol., 247, 305, 10.1016/0922-4106(93)90199-J Paul, 1994, Adaptation of the N-methyl-d-aspartate receptor complex following chronic antidepressant treatments, J. Pharmacol. Exp. Ther., 269, 95 Pilc, 2002, A role for glutamate in the treatment of anxiety and depression: focus on group I metabotropic glutamate (mGlu) receptors, Drugs Fut., 27, 753, 10.1358/dof.2002.027.08.687386 Popik, 2000, Chronic treatment with antidepressants affects glycine/NMDA receptor function: behavioral evidence, Neuropharmacology, 39, 2278, 10.1016/S0028-3908(00)00090-3 Porsolt, 1978, Behavioral despair in rat: a new model sensitive to antidepressant treatments, Eur. J. Pharmacol., 47, 379, 10.1016/0014-2999(78)90118-8 Przegalinski, 1997, Antidepressant-like effects of a partial agonist at strychnine-insensitive glycine receptors and a competitive NMDA receptor antagonist, Neuropharmacology, 36, 31, 10.1016/S0028-3908(96)00157-8 Redmond, 1997, Behavioural and neurochemical effects of dizocilpine in the olfactory bulbectomized rat model of depression, Pharmacol. Biochem. Behav., 58, 355, 10.1016/S0091-3057(97)00259-1 M. Schlegel-Zawadzka, A. Zięba, D. Dudek, M. Krośniak, M. Szymaczek, G. Nowak, Effect of depression and of antidepressant therapy on serum zinc levels—a preliminary clinical study, in: Trace Elements in Man and Animals, vol. 10, Kluwer Academic Publishers, Plenum Press, 2000, pp. 607–610. Skolnick, 1999, Antidepressants for the new millennium, Eur. J. Pharmacol., 375, 31, 10.1016/S0014-2999(99)00330-1 Skolnick, 1996, Adaptation of N-methyl-d-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression, Pharmacopsychiatry, 29, 23, 10.1055/s-2007-979537 Skolnick, 2001, Current perspectives on the development of non-biogenic amine-based antidepressants, Pharmacol. Res., 43, 411, 10.1006/phrs.2000.0806 Smart, 1994, Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc, Prog. Neurobiol., 42, 393, 10.1016/0301-0082(94)90082-5 Szewczyk, 2002, Interaction of zinc with antidepressants in the forced swimming test in mice, Pol. J. Pharmacol., 54, 681 Trullas, 1990, Functional antagonists at the NMDA receptor complex exhibit antidepressant actions, Eur. J. Pharmacol., 185, 1, 10.1016/0014-2999(90)90204-J Vaidya, 1999, Hippocampal mossy fiber sprouting induced by chronic electroconvulsive seizures, Neuroscience, 89, 157, 10.1016/S0306-4522(98)00289-9 van Riezen, 1977, Olfactory bulb ablation in the rat: behavioural changes and their reversal by antidepressant drugs, Br. J. Pharmacol., 60, 521, 10.1111/j.1476-5381.1977.tb07530.x Vetulani, 2000, Antidepressants: past, present and future, Eur. J. Pharmacol., 405, 351, 10.1016/S0014-2999(00)00565-3