ERS/ESICM/ESCMID/ALAT guidelines for the management of severe community-acquired pneumonia

Intensive Care Medicine - Tập 49 - Trang 615-632 - 2023
Ignacio Martin-Loeches1,2,3,4, Antoni Torres3,4, Blin Nagavci5, Stefano Aliberti6,7, Massimo Antonelli8, Matteo Bassetti9, Lieuwe D. Bos10, James D. Chalmers11, Lennie Derde12, Jan de Waele13, Jose Garnacho-Montero14, Marin Kollef15, Carlos M. Luna16, Rosario Menendez17, Michael S. Niederman17, Dmitry Ponomarev18,19, Marcos I. Restrepo20, David Rigau21, Marcus J. Schultz10,22,23, Emmanuel Weiss24, Tobias Welte25, Richard Wunderink26
1Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organisation (MICRO), St James’s Hospital, Dublin, Ireland
2Trinity College Dublin, Dublin, Ireland
3CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
4Pulmonary Department, Hospital Clinic, Universitat de Barcelona, IDIBAPS, ICREA, Barcelona, Spain
5Faculty of Medicine, Institute for Evidence in Medicine, Medical Centre–University of Freiburg, University of Freiburg, Freiburg, Germany
6Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
7Respiratory Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
8Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
9Infectious Disease Clinic, Department of Health Sciences, Ospedale Policlinico San Martino IRCCS, University of Genoa, Genoa, Italy
10Department of Intensive Care and Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
11Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
12Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
13Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
14Intensive Care Unit, University Hospital Virgen Macarena, Seville, Spain
15Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, USA
16Neumonología, Hospital de Clínicas, UBA, Buenos Aires, Argentina
17Pneumology Service, Universitary and Politechnic Hospital La Fe, Valencia, Spain
18Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
19Department of Intensive Care, E.N. Meshalkin National Medical Research Center, Novosibirsk, Russian Federation
20South Texas Veterans Health Care System, Audie L. Murphy Memorial Veterans Hospital, and University of Texas Health, San Antonio, USA
21Centre Cochrane Iberoamericà–Institut d’Investigació Biomèdica Sant Pau, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
22Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
23Nuffield Department of Medicine, University of Oxford, Oxford, UK
24Department of Anaesthesiology and Critical Care, Hôpital Beaujon, DMU PARABOL, AP-HP Nord and Université de Paris, Clichy, France
25Department of Respiratory Medicine and Infectious Disease, Member of the German Center of Lung Research, Hannover School of Medicine, Hannover, Germany
26Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, USA

Tóm tắt

Severe community-acquired pneumonia (sCAP) is associated with high morbidity and mortality, and whilst European and non-European guidelines are available for community-acquired pneumonia, there are no specific guidelines for sCAP. The European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), and Latin American Thoracic Association (ALAT) launched a task force to develop the first international guidelines for sCAP. The panel comprised a total of 18 European and four non-European experts, as well as two methodologists. Eight clinical questions for sCAP diagnosis and treatment were chosen to be addressed. Systematic literature searches were performed in several databases. Meta-analyses were performed for evidence synthesis, whenever possible. The quality of evidence was assessed with GRADE (Grading of Recommendations, Assessment, Development and Evaluation). Evidence to Decision frameworks were used to decide on the direction and strength of recommendations. Recommendations issued were related to diagnosis, antibiotics, organ support, biomarkers and co-adjuvant therapy. After considering the confidence in effect estimates, the importance of outcomes studied, desirable and undesirable consequences of treatment, cost, feasibility, acceptability of the intervention and implications to health equity, recommendations were made for or against specific treatment interventions. In these international guidelines, ERS, ESICM, ESCMID, and ALAT provide evidence-based clinical practice recommendations for diagnosis, empirical treatment, and antibiotic therapy for sCAP, following the GRADE approach. Furthermore, current knowledge gaps have been highlighted and recommendations for future research have been made.

Tài liệu tham khảo

Torres A, Cilloniz C, Niederman MS et al (2021) Pneumonia. Nat Rev Dis Primers 7:25. https://doi.org/10.1038/s41572-021-00259-0 Ferrer M, Travierso C, Cilloniz C et al (2018) Severe community-acquired pneumonia: characteristics and prognostic factors in ventilated and non-ventilated patients. PLoS ONE 13:e0191721 Kolditz M, Ewig S, Klapdor B et al (2015) Community-acquired pneumonia as medical emergency: predictors of early deterioration. Thorax 70:551–558. https://doi.org/10.1136/thoraxjnl-2014-206744 Martin-Loeches I, Garduno A, Povoa P et al (2022) Choosing antibiotic therapy for severe community-acquired pneumonia. Curr Opin Infect Dis 35:133–139. https://doi.org/10.1097/QCO.0000000000000819 Simonetti AF, Garcia-Vidal C, Viasus D et al (2016) Declining mortality among hospitalized patients with community-acquired pneumonia. Clin Microbiol Infect 22(567):e1-567.e7. https://doi.org/10.1016/j.cmi.2016.03.015 Cavallazzi R, Furmanek S, Arnold FW et al (2020) The burden of community-acquired pneumonia requiring admission to ICU in the United States. Chest 158:1008–1016. https://doi.org/10.1016/j.chest.2020.03.051 Cilloniz C, Ferrer M, Liapikou A et al (2018) Acute respiratory distress syndrome in mechanically ventilated patients with community-acquired pneumonia. Eur Respir J 51:1702215. https://doi.org/10.1183/13993003.02215-2017 Jain S, Self WH, Wunderink RG et al (2015) Community-acquired pneumonia requiring hospitalization among US adults. N Engl J Med 373:415–427. https://doi.org/10.1056/NEJMoa1500245 Rouzé A, Martin-Loeches I, Povoa P et al (2021) Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: a European multicenter cohort study. Intensive Care Med 47:188–198. https://doi.org/10.1007/s00134-020-06323-9 Metlay JP, Waterer GW, Long AC et al (2019) Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 200:e45–e67. https://doi.org/10.1164/rccm.201908-1581ST Menéndez R, Cilloniz C, España PP et al (2020) Neumonía adquirida en la comunidad. Normativa de la Sociedad Española de Neumología y Cirugía Torácica (SEPAR). Actualización 2020. Arch Bronconeumol 56(1):1–10. https://doi.org/10.1016/j.arbres.2020.01.014 Mandell LA, Wunderink RG, Anzueto A et al (2007) Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 44(Suppl. 2):S27–S72. https://doi.org/10.1086/511159 Ramirez JA, Musher DM, Evans SE et al (2020) Treatment of community-acquired pneumonia in immunocompromised adults. Chest 158:1896–1911. https://doi.org/10.1016/j.chest.2020.05.598 Brożek JL, Akl EA, Jaeschke R et al (2009) Grading quality of evidence and strength of recommendations in clinical practice guidelines: Part 2 of 3. The GRADE approach to grading quality of evidence about diagnostic tests and strategies. Allergy 64:1109–1116. https://doi.org/10.1111/j.1398-9995.2009.02083.x Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097 Nagavci B, Tonia T, Bush A, et al. (2021) ERS Handbook for Clinical Practice Guidelines: Methodological Guidance for Developing ERS Clinical Practice Guidelines [1.0]. Date last updated: November 2021. www.ersnet.org/science-and-research/development-programme/ers-clinical-practice-guidelines-statements-and-technical-standards/ Guyatt GH, Oxman AD, Kunz R et al (2011) GRADE guidelines: 2. Framing the question and deciding on important outcomes. J Clin Epidemiol 64:395–400. https://doi.org/10.1016/j.jclinepi.2010.09.012 Higgins JPT, Altman DG, Gotzsche PC et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928. https://doi.org/10.1136/bmj.d5928 Deeks JJ, Higgins JPT, Altman DG (2021) Chapter 10: analysing data and undertaking meta-analyses. In: Higgins JPT, Thomas J, Chandler J et al (eds) Cochrane Handbook for Systematic reviews of interventions. Version 6.2, updated February 2021. Cochrane, 2021. www.training.cochrane.org/handbook Alonso-Coello P, Schünemann HJ, Moberg J et al (2016) GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 1: Introduction. BMJ 353:i2016. https://doi.org/10.1136/bmj.i2016 Guyatt G, Oxman AD, Akl EA et al (2011) GRADE guidelines: 1. Introduction – GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 64:383–394. https://doi.org/10.1016/j.jclinepi.2010.04.026 Andrews J, Guyatt G, Oxman AD et al (2013) GRADE guidelines: 14. Going from evidence to recommendations: the significance and presentation of recommendations. J Clin Epidemiol 66:719–725. https://doi.org/10.1016/j.jclinepi.2012.03.013 Guyatt GH, Alonso-Coello P, Schünemann HJ et al (2016) Guideline panels should seldom make good practice statements: guidance from the GRADE Working Group. J Clin Epidemiol 80:3–7. https://doi.org/10.1016/j.jclinepi.2016.07.006 Alimi Y, Lim WS, Lansbury L et al (2017) Systematic review of respiratory viral pathogens identified in adults with community-acquired pneumonia in Europe. J Clin Virol 95:26–35. https://doi.org/10.1016/j.jcv.2017.07.019 Brendish NJ, Malachira AK, Armstrong L et al (2017) Routine molecular point-of-care testing for respiratory viruses in adults presenting to hospital with acute respiratory illness (ResPOC): a pragmatic, open-label, randomised controlled trial. Lancet Respir Med 5:401–411. https://doi.org/10.1016/S2213-2600(17)30120-0 Webb BJ, Sorensen J, Mecham I et al (2019) Antibiotic use and outcomes after implementation of the drug resistance in pneumonia score in ED patients with community-onset pneumonia. Chest 156:843–851. https://doi.org/10.1016/j.chest.2019.04.093 Jones BE, Ying J, Stevens V et al (2020) Empirical anti-MRSA vs standard antibiotic therapy and risk of 30-day mortality in patients hospitalized for pneumonia. JAMA Intern Med 180:552–560. https://doi.org/10.1001/jamainternmed.2019.7495 Klein M, Bacher J, Barth S et al (2021) Multicenter evaluation of the Unyvero platform for testing bronchoalveolar lavage fluid. J Clin Microbiol 59:e02497-e2520. https://doi.org/10.1128/JCM.02497-20 Murphy CN, Fowler R, Balada-Llasat JM et al (2020) Multicenter evaluation of the BioFire FilmArray pneumonia/pneumonia plus panel for detection and quantification of agents of lower respiratory tract infection. J Clin Microbiol 58:e00128-e220. https://doi.org/10.1128/JCM.00128-20 Webb BJ, Sorensen J, Jephson A et al (2019) Broad-spectrum antibiotic use and poor outcomes in community-onset pneumonia: a cohort study. Eur Respir J 54:1900057. https://doi.org/10.1183/13993003.00057-2019 Mayer LM, Kahlert C, Rassouli F et al (2017) Impact of viral multiplex real-time PCR on management of respiratory tract infection: a retrospective cohort study. Pneumonia 9:4. https://doi.org/10.1186/s41479-017-0028-z Pickens C, Wunderink RG, Qi C et al (2020) A multiplex polymerase chain reaction assay for antibiotic stewardship in suspected pneumonia. Diagn Microbiol Infect Dis 98:115179. https://doi.org/10.1016/j.diagmicrobio.2020.115179 Buchan BW, Windham S, Balada-Llasat J-M et al (2020) Practical comparison of the BioFire FilmArray pneumonia panel to routine diagnostic methods and potential impact on antimicrobial stewardship in adult hospitalized patients with lower respiratory tract infections. J Clin Microbiol 58:e00135-e220. https://doi.org/10.1128/JCM.00135-20 Paonessa JR, Shah RD, Pickens CI et al (2019) Rapid detection of methicillin-resistant Staphylococcus aureus in BAL: a pilot randomized controlled trial. Chest 155:999–1007. https://doi.org/10.1016/j.chest.2019.02.007 Parke RL, McGuinness SP (2013) Pressures delivered by nasal high flow oxygen during all phases of the respiratory cycle. Respir Care 58:1621–1624. https://doi.org/10.4187/respcare.02358 Corley A, Caruana LR, Barnett AG et al (2011) Oxygen delivery through high-flow nasal cannulae increase end-expiratory lung volume and reduce respiratory rate in post-cardiac surgical patients. Br J Anaesth 107:998–1004. https://doi.org/10.1093/bja/aer265 Natalini D, Grieco DL, Santantonio MT et al (2019) Physiological effects of high-flow oxygen in tracheostomized patients. Ann Intensive Care 9:114. https://doi.org/10.1186/s13613-019-0591-y Möller W, Feng S, Domanski U et al (2017) Nasal high flow reduces dead space. J Appl Physiol 122:191–197. https://doi.org/10.1152/japplphysiol.00584.2016 Möller W, Celik G, Feng S et al (2015) Nasal high flow clears anatomical dead space in upper airway models. J Appl Physiol 118:1525–1532. https://doi.org/10.1152/japplphysiol.00934.2014 Schultz MJ, Roca O, Shrestha GS (2021) Global lessons learned from COVID-19 mass casualty incidents. Br J Anaesth 128:e97–e100. https://doi.org/10.1016/j.bja.2021.10.040 Sztrymf B, Messika J, Bertrand F et al (2011) Beneficial effects of humidified high flow nasal oxygen in critical care patients: a prospective pilot study. Intensive Care Med 37:1780–1786. https://doi.org/10.1007/s00134-011-2354-6 Parke RL, McGuinness SP, Eccleston ML (2011) A preliminary randomized controlled trial to assess effectiveness of nasal high-flow oxygen in intensive care patients. Respir Care 56:265–270. https://doi.org/10.4187/respcare.00801 Sim MAB, Dean P, Kinsella J et al (2008) Performance of oxygen delivery devices when the breathing pattern of respiratory failure is simulated. Anaesthesia 63:938–940. https://doi.org/10.1111/j.1365-2044.2008.05536.x Tobin MJ, Laghi F, Jubran A (2020) P-SILI is not justification for intubation of COVID-19 patients. Ann Intensive Care 10:105. https://doi.org/10.1186/s13613-020-00724-1 Grieco DL, Menga LS, Raggi V et al (2020) Physiological comparison of high-flow nasal cannula and helmet noninvasive ventilation in acute hypoxemic respiratory failure. Am J Respir Crit Care Med 201:303–312. https://doi.org/10.1164/rccm.201904-0841OC Confalonieri M, Potena A, Carbone G et al (1999) Acute respiratory failure in patients with severe community-acquired pneumonia. Am J Respir Crit Care Med 160:1585–1591. https://doi.org/10.1164/ajrccm.160.5.9903015 Hilbert G, Gruson D, Vargas F et al (2001) Noninvasive ventilation in immunosuppressed patients with pulmonary infiltrates, fever, and acute respiratory failure. N Engl J Med 344:481–487. https://doi.org/10.1056/NEJM200102153440703 Cosentini R, Brambilla AM, Aliberti S et al (2010) Helmet continuous positive airway pressure vs oxygen therapy to improve oxygenation in community-acquired pneumonia. Chest 138:114–120. https://doi.org/10.1378/chest.09-2290 Brambilla AM, Aliberti S, Prina E et al (2014) Helmet CPAP vs oxygen therapy in severe hypoxemic respiratory failure due to pneumonia. Intensive Care Med 40:942–949. https://doi.org/10.1007/s00134-014-3325-5 Frat J-P, Thille AW, Mercat A et al (2015) High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 372:2185–2196. https://doi.org/10.1056/NEJMoa1503326 Lemiale V, Mokart D, Resche-Rigon M et al (2015) Effect of noninvasive ventilation vs oxygen therapy on mortality among immunocompromised patients with acute respiratory failure. JAMA 314:1711–1719. https://doi.org/10.1001/jama.2015.12402 Martin-Loeches I, Arabi Y, Citerio G (2021) If not now, when? A clinical perspective on the unprecedented challenges facing ICUs during the COVID-19 pandemic. Intensive Care Med 47:588–590. https://doi.org/10.1007/s00134-021-06404-3 Gaillat J, Bru JP, Sedallian A (1994) Penicillin G/ofloxacin versus erythromycin/amoxicillin-clavulanate in the treatment of severe community-acquired pneumonia. Eur J Clin Microbiol Infect Dis 13:639–644. https://doi.org/10.1007/BF01973989 Wilson BZ, Anzueto A, Restrepo MI et al (2012) Comparison of two guideline-concordant antimicrobial combinations in elderly patients hospitalized with severe community-acquired pneumonia. Crit Care Med 40:2310–2314. https://doi.org/10.1097/CCM.0b013e31825151a8 Mortensen EM, Restrepo MI, Anzueto A et al (2005) The impact of empiric antimicrobial therapy with a β-lactam and fluoroquinolone on mortality for patients hospitalized with severe pneumonia. Crit Care 10:R8. https://doi.org/10.1186/cc3934 Martin-Loeches I, Lisboa T, Rodriguez A et al (2010) Combination antibiotic therapy with macrolides improves survival in intubated patients with community-acquired pneumonia. Intensive Care Med 36:612–620. https://doi.org/10.1007/s00134-009-1730-y Ceccato A, Cilloniz C, Ranzani OT et al (2017) Treatment with macrolides and glucocorticosteroids in severe community-acquired pneumonia: a post-hoc exploratory analysis of a randomized controlled trial. PLoS ONE 12:e0178022 Adrie C, Schwebel C, Garrouste-Orgeas M et al (2013) Initial use of one or two antibiotics for critically ill patients with community-acquired pneumonia: impact on survival and bacterial resistance. Crit Care 17:R265. https://doi.org/10.1186/cc13095 Hansen MP, Scott AM, McCullough A et al (2019) Adverse events in people taking macrolide antibiotics versus placebo for any indication. Cochrane Database Syst Rev 1:CD011825 Fish DN (2001) Fluoroquinolone adverse effects and drug interactions. Pharmacotherapy 21:253S-272S. https://doi.org/10.1592/phco.21.16.253S.33993 Martin-Loeches I, Dickson R, Torres A et al (2020) The importance of airway and lung microbiome in the critically ill. Crit Care 24:537. https://doi.org/10.1186/s13054-020-03219-4 Bratzler DW, Ma A, Nsa W (2008) Initial antibiotic selection and patient outcomes: observations from the National Pneumonia Project. Clin Infect Dis 47:S193–S201. https://doi.org/10.1086/591404 Frei CR, Restrepo MI, Mortensen EM et al (2006) Impact of guideline-concordant empiric antibiotic therapy in community-acquired pneumonia. Am J Med 119:865–871. https://doi.org/10.1016/j.amjmed.2006.02.014 Houck PM, MacLehose RF, Niederman MS et al (2001) Empiric antibiotic therapy and mortality among medicare pneumonia inpatients in 10 Western States. Chest 119:1420–1426. https://doi.org/10.1378/chest.119.5.1420 Karhu J, Ala-Kokko TI, Ohtonen P et al (2013) Severe community-acquired pneumonia treated with β-lactam-respiratory quinolone vs β-lactam-macrolide combination. Acta Anaesthesiol Scand 57:587–593. https://doi.org/10.1111/aas.12081 Mortensen EM, Halm EA, Pugh MJ et al (2014) Association of azithromycin with mortality and cardiovascular events among older patients hospitalized with pneumonia. JAMA 311:2199–2208 Waterer GW, Somes GW, Wunderink RG (2001) Monotherapy may be suboptimal for severe bacteremic pneumococcal pneumonia. Arch Intern Med 161:1837–1842. https://doi.org/10.1001/archinte.161.15.1837 Naucler P, Darenberg J, Morfeldt E et al (2013) Contribution of host, bacterial factors and antibiotic treatment to mortality in adult patients with bacteraemic pneumococcal pneumonia. Thorax 68:571–579. https://doi.org/10.1136/thoraxjnl-2012-203106 Mongardon N, Max A, Bouglé A et al (2012) Epidemiology and outcome of severe pneumococcal pneumonia admitted to intensive care unit: a multicenter study. Crit Care 16:R155. https://doi.org/10.1186/cc11471 Schuetz P, Wirz Y, Sager R et al (2017) Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst Rev 10:CD007498 Schuetz P, Wirz Y, Sager R et al (2018) Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: a patient level meta-analysis. Lancet Infect Dis 18:95–107. https://doi.org/10.1016/S1473-3099(17)30592-3 Nobre V, Harbarth S, Graf J-D et al (2008) Use of procalcitonin to shorten antibiotic treatment duration in septic patients. Am J Respir Crit Care Med 177:498–505. https://doi.org/10.1164/rccm.200708-1238OC Bouadma L, Luyt C-E, Tubach F et al (2010) Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet 375:463–474. https://doi.org/10.1016/S0140-6736(09)61879-1 de Jong E, van Oers JA, Beishuizen A et al (2016) Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis 16:819–827. https://doi.org/10.1016/S1473-3099(16)00053-0 Rodríguez AH, Avilés-Jurado FX, Díaz E et al (2016) Procalcitonin (PCT) levels for ruling-out bacterial coinfection in ICU patients with influenza: a CHAID decision-tree analysis. J Infect 72:143–151. https://doi.org/10.1016/j.jinf.2015.11.007 Muthuri SG, Venkatesan S, Myles PR et al (2014) Effectiveness of neuraminidase inhibitors in reducing mortality in patients admitted to hospital with influenza A H1N1pdm09 virus infection: a meta-analysis of individual participant data. Lancet Respir Med 2:395–404. https://doi.org/10.1016/S2213-2600(14)70041-4 Ramirez J, Peyrani P, Wiemken T et al (2018) A randomized study evaluating the effectiveness of oseltamivir initiated at the time of hospital admission in adults hospitalized with influenza-associated lower respiratory tract infections. Clin Infect Dis 67:736–742. https://doi.org/10.1093/cid/ciy163 Jiang S, Liu T, Hu Y et al (2019) Efficacy and safety of glucocorticoids in the treatment of severe community-acquired pneumonia. Medicine 98:e16239. https://doi.org/10.1097/MD.0000000000016239 Meduri GU, Shih M-C, Bridges L et al (2022) Low-dose methylprednisolone treatment in critically ill patients with severe community-acquired pneumonia. Intensive Care Med 48:1009–1023. https://doi.org/10.1007/s00134-022-06684-3 Sabry NA, Omar EE-D (2011) Corticosteroids and ICU course of community acquired pneumonia in Egyptian settings. Pharmacol Pharm 2:73–81 El-Ghamrawy AH, Shokeir MH, Esmat AA (2006) Effects of low-dose hydrocortisone in ICU patients with severe community-acquired pneumonia. Egypt J Chest 55:91–99 Confalonieri M, Urbino R, Potena A et al (2005) Hydrocortisone infusion for severe community-acquired pneumonia: a preliminary randomized study. Am J Respir Crit Care Med 171:242–248. https://doi.org/10.1164/rccm.200406-808OC Marik P, Kraus P, Sribante J et al (1993) Hydrocortisone and tumor necrosis factor in severe community-acquired pneumonia. Chest 104:389–392. https://doi.org/10.1378/chest.104.2.389 VA Office of Research and Development (2020) Extended Steroid in Use in Community Acquired Pneumonia (CAP)(e) (ESCAPe). Date last updated: 8 October 2020. https://clinicaltrials.gov/ct2/show/NCT01283009. Torres A, Sibila O, Ferrer M et al (2015) Effect of corticosteroids on treatment failure among hospitalized patients with severe community-acquired pneumonia and high inflammatory response: a randomized clinical trial. JAMA 313:677–686. https://doi.org/10.1001/jama.2015.88 Maruyama T, Fujisawa T, Ishida T et al (2019) A therapeutic strategy for all pneumonia patients: a 3-year prospective multicenter cohort study using risk factors for multidrug-resistant pathogens to select initial empiric therapy. Clin Infect Dis 68:1080–1088. https://doi.org/10.1093/cid/ciy631 Gil R, Webb BJ (2020) Strategies for prediction of drug-resistant pathogens and empiric antibiotic selection in community-acquired pneumonia. Curr Opin Pulm Med 26:249–259. https://doi.org/10.1097/MCP.0000000000000670 Niederman MS, Brito V (2007) Pneumonia in the older patient. Clin Chest Med 28:751–771. https://doi.org/10.1016/j.ccm.2007.08.004 Shorr AF, Zilberberg MD, Micek ST et al (2008) Prediction of infection due to antibiotic-resistant bacteria by select risk factors for health care-associated pneumonia. Arch Intern Med 168:2205. https://doi.org/10.1001/archinte.168.20.2205 Aliberti S, Di Pasquale M, Zanaboni AM et al (2012) Stratifying risk factors for multidrug-resistant pathogens in hospitalized patients coming from the community with pneumonia. Clin Infect Dis 54:470–478. https://doi.org/10.1093/cid/cir840 Shindo Y, Ito R, Kobayashi D et al (2013) Risk factors for drug-resistant pathogens in community-acquired and healthcare-associated pneumonia. Am J Respir Crit Care Med 188:985–995. https://doi.org/10.1164/rccm.201301-0079OC Shorr AF, Myers DE, Huang DB et al (2013) A risk score for identifying methicillin-resistant Staphylococcus aureus in patients presenting to the hospital with pneumonia. BMC Infect Dis 13:268. https://doi.org/10.1186/1471-2334-13-268 Prina E, Ranzani OT, Polverino E et al (2015) Risk factors associated with potentially antibiotic-resistant pathogens in community-acquired pneumonia. Ann Am Thorac Soc 12:153–160. https://doi.org/10.1513/AnnalsATS.201407-305OC Webb BJ, Dascomb K, Stenehjem E et al (2016) Derivation and multicenter validation of the drug resistance in pneumonia clinical prediction score. Antimicrob Agents Chemother 60:2652–2663. https://doi.org/10.1128/AAC.03071-15 Schreiber MP, Chan CM, Shorr AF (2010) Resistant pathogens in nonnosocomial pneumonia and respiratory failure. Chest 137:1283–1288. https://doi.org/10.1378/chest.09-2434 Martin-Loeches I, Levy MM, Artigas A (2015) Management of severe sepsis: advances, challenges, and current status. Drug Des Devel Ther 9:2079–2088. https://doi.org/10.2147/DDDT.S78757 Oi I, Ito I, Tanabe N et al (2020) Cefepime vs meropenem for moderate-to-severe pneumonia in patients at risk for aspiration: an open-label, randomized study. J Infect Chemother 26:181–187. https://doi.org/10.1016/j.jiac.2019.08.005 McCabe C (2009) Guideline-concordant therapy and reduced mortality and length of stay in adults with community-acquired pneumonia. Arch Intern Med 169:1525. https://doi.org/10.1001/archinternmed.2009.259 Rhodes A, Evans LE, Alhazzani W et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43:304–377. https://doi.org/10.1007/s00134-017-4683-6 Jones BE, Brown KA, Jones MM et al (2017) Variation in empiric coverage versus detection of methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in hospitalizations for community-onset pneumonia across 128 US Veterans Affairs Medical Centers. Infect Control Hosp Epidemiol 38:937–944. https://doi.org/10.1017/ice.2017.98 Jones BE, Jones MM, Huttner B et al (2015) Trends in antibiotic use and nosocomial pathogens in hospitalized veterans with pneumonia at 128 medical centers, 2006–2010. Clin Infect Dis 61:1403–1410. https://doi.org/10.1093/cid/civ629 Restrepo MI, Babu BL, Reyes LF et al (2018) Burden and risk factors for Pseudomonas aeruginosa community-acquired pneumonia: a multinational point prevalence study of hospitalised patients. Eur Respir J 52:1701190. https://doi.org/10.1183/13993003.01190-2017 Villafuerte D, Aliberti S, Soni NJ et al (2020) Prevalence and risk factors for Enterobacteriaceae in patients hospitalized with community-acquired pneumonia. Respirology 25:543–551. https://doi.org/10.1111/resp.13663 Aliberti S, Reyes LF, Faverio P et al (2016) Global initiative for meticillin-resistant Staphylococcus aureus pneumonia (GLIMP): an international, observational cohort study. Lancet Infect Dis 16:1364–1376. https://doi.org/10.1016/S1473-3099(16)30267-5 Tillotson G, Lodise T, Classi P et al (2020) Antibiotic treatment failure and associated outcomes among adult patients with community-acquired pneumonia in the outpatient setting: a real-world US Insurance Claims Database Study. Open Forum Infect Dis 7:ofaa065. https://doi.org/10.1093/ofid/ofaa065 Mandell LA, Niederman MS (2019) Aspiration pneumonia. N Engl J Med 380:651–663. https://doi.org/10.1056/NEJMra1714562 Gupte T, Knack A, Cramer JD (2022) Mortality from aspiration pneumonia: incidence, trends, and risk factors. Dysphagia 37:1493–1500. https://doi.org/10.1007/s00455-022-10412-w Suzuki J, Ikeda R, Kato K et al (2021) Characteristics of aspiration pneumonia patients in acute care hospitals: a multicenter, retrospective survey in Northern Japan. PLoS ONE 16:e0254261 Bowerman TJ, Zhang J, Waite LM (2018) Antibacterial treatment of aspiration pneumonia in older people: a systematic review. Clin Interv Aging 13:2201–2213. https://doi.org/10.2147/CIA.S183344 El-Solh AA, Pietrantoni C, Bhat A et al (2003) Microbiology of severe aspiration pneumonia in institutionalized elderly. Am J Respir Crit Care Med 167:1650–1654. https://doi.org/10.1164/rccm.200212-1543OC Levison ME (1983) Clindamycin compared with penicillin for the treatment of anaerobic lung abscess. Ann Intern Med 98:466. https://doi.org/10.7326/0003-4819-98-4-466 Kadowaki M (2005) Reappraisal of clindamycin IV monotherapy for treatment of mild-to-moderate aspiration pneumonia in elderly patients. Chest 127:1276–1282 Marumo S, Teranishi T, Higami Y et al (2014) Effectiveness of azithromycin in aspiration pneumonia: a prospective observational study. BMC Infect Dis 14:685. https://doi.org/10.1186/s12879-014-0685-y Hasegawa S, Shiraishi A, Yaegashi M et al (2019) Ceftriaxone versus ampicillin/sulbactam for the treatment of aspiration-associated pneumonia in adults. J Comp Eff Res 8:1275–1284. https://doi.org/10.2217/cer-2019-0041 Sun T, Sun L, Wang R et al (2014) Clinical efficacy and safety of moxifloxacin versus levofloxacin plus metronidazole for community-acquired pneumonia with aspiration factors. Chin Med J (Engl) 127:1201–1205