Propagation properties of dipole-managed solitons through an inhomogeneous cubic–quintic–septic medium

Optics Communications - Tập 425 - Trang 64-70 - 2018
Abdelouahab Messouber1, Houria Triki2, Faiçal Azzouzi1, Qin Zhou3, Anjan Biswas4,5,6, Seithuti P. Moshokoa6, Milivoj Belic7
1Radiation and Matter Physics Laboratory, Matter Sciences Department, Mohamed-Cherif Messaadia University, P.O. Box 1553, Souk-Ahras, 41000, Algeria
2Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University, P.O. Box 12, 23000 Annaba, Algeria
3School of Electronics and Information Engineering, Wuhan Donghu University, Wuhan 430212, People’s Republic of China
4Department of Physics, Chemistry and Mathematics, Alabama A&M University, Normal, AL 35762, USA
5Department of Mathematics and Statistics, College of Science, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, 13318, Saudi Arabia
6Department of Mathematics and Statistics, Tshwane University of Technology, Pretoria 0008, South Africa
7Science Program, Texas A&M University at Qatar, PO Box 23874, Doha, Qatar

Tài liệu tham khảo

Yang, 2010, Three coupled ultraslow temporal solitons in a five-level tripod atomic system, Phys. Rev. A, 81, 10.1103/PhysRevA.81.023814 Li, 2000, New types of solitary wave solutions for the higher order nonlinear Schrödinger equation, Phys. Rev. Lett., 84, 4096, 10.1103/PhysRevLett.84.4096 Hong, 2001, Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non- Kerr terms, Opt. Commun., 194, 217, 10.1016/S0030-4018(01)01267-6 Hasegawa, 1973, Transmission of stationary nonlinear optical physics in dispersive dielectric fibers I: Anomalous dispersion, Appl. Phys. Lett., 23, 142, 10.1063/1.1654836 Hasegawa, 1973, Transmission of stationary nonlinear optical physics in dispersive dielectric fibers II: Normal dispersion, Appl. Phys. Lett., 23, 171, 10.1063/1.1654847 Mollenauer, 1980, Phys. Rev. Lett., 45, 1095, 10.1103/PhysRevLett.45.1095 Li, 2010, Dark and antidark solitons in the modified nonlinear Schrödinger equation accounting for the self-steepening effect, Phys. Rev. E, 81, 10.1103/PhysRevE.81.046606 Kodama, 1985, J. Stat. Phys., 39, 597, 10.1007/BF01008354 Kodama, 1987, Nonlinear pulse propagation in a monomode dielectric guide, J. Quantum Electron., 23, 510, 10.1109/JQE.1987.1073392 Zaspel, 1999, Optical solitary wave and shock solutions of the higher order nonlinear Schrödinger equation, Phys. Rev. Lett., 82, 723, 10.1103/PhysRevLett.82.723 Choudhuri, 2013, Higher-order nonlinear Schrödinger equation with derivative non-Kerr nonlinear terms: A model for sub-10-fs-pulse propagation, Phys. Rev. A, 88, 10.1103/PhysRevA.88.033808 Choudhuri, 2012, Dark-in-the-Bright solitary wave solution of higher-order nonlinear Schrödinger equation with non-Kerr terms, Opt. Commun., 285, 364, 10.1016/j.optcom.2011.09.043 Triki, 2013, Multipole solitary wave solutions of the higher-order nonlinear Schrödinger equation with quintic non-Kerr terms, Opt. Commun., 309, 71, 10.1016/j.optcom.2013.06.039 Azzouzi, 2015, Dipole soliton solution for the homogeneous high-order nonlinear Schrödinger equation with cubic-quintic-septic non-Kerr terms, Appl. Math. Model., 39, 1300, 10.1016/j.apm.2014.08.011 Triki, 2017, Dipole solitons in optical metamaterials with Kerr law nonlinearity, Optik, 128, 71, 10.1016/j.ijleo.2016.10.017 Min, 2016, Exact dipole solitary wave solution in metamaterials with higher-order dispersion, J. Modern Opt., 10.1080/09500340.2016.1185178 Yang, 2005, Combined solitary wave solutions for the inhomogeneous higher-order nonlinear Schrödinger equation, Phys. Rev. E, 71, 10.1103/PhysRevE.71.036616 Soloman Raju, 2005, Nonlinear compression of solitary waves in asymmetric twin-core fibers, Phys. Rev. E, 71 Loomba, 2015, Bright solitons of the nonautonomous cubic-quintic nonlinear Schrödinger equation with sign-reversal nonlinearity, Phys. Rev. A, 92, 10.1103/PhysRevA.92.033811 Chen, 2006, Measurement of fifth- and seventh-order nonlinearities of glasses, J. Opt. Soc. Amer. B, 23, 347, 10.1364/JOSAB.23.000347 Agrawal, 2007 Chang, 1997, IEEE J. Quantum Electron., 33, 1455, 10.1109/3.622623 Chang, 1998, Opt. Lett., 23, 4, 10.1364/OL.23.000283 Wu, 2013, Cubic-quintic condensate solitons in four-wave mixing, Phys. Rev. A, 88, 10.1103/PhysRevA.88.063828 Zhang, 2011, Four-wave mixing dipole soliton in laser-induced atomic gratings, Phys. Rev. Lett., 106, 10.1103/PhysRevLett.106.093904 Choudhuri, 2016, Self-similar localized pulses for the nonlinear Schrödinger equation with distributed cubic-quintic nonlinearity, Phys. Rev. A, 94, 10.1103/PhysRevA.94.063814 He, 2012, Analytical nonautonomous soliton solutions for the cubic-quintic nonlinear Schrödinger equation with distributed coefficients, Opt. Commun., 285, 755, 10.1016/j.optcom.2011.10.087 Belmonte-Beitia, 2008, Localized nonlinear waves in systems with time- and space-modulated nonlinearities, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.164102 Belmonte-Beitia, 2009, Exact solutions for the quintic nonlinear Schrödinger equation with time and space modulated nonlinearities and potentials, Phys. Lett. A, 373, 448, 10.1016/j.physleta.2008.11.056 Belmonte-Beitia, 2009, Solitons for the cubic–quintic nonlinear Schrödinger equation with time- and space-modulated coefficients, J. Phys. A, 42, 10.1088/1751-8113/42/16/165201 Triki, 2017, Solitons in the nonlinear Schrödinger equation with two power-law nonlinear terms modulated in time and space, Phys. Rev. E, 95, 10.1103/PhysRevE.95.062208