Filtration-enhanced highly efficient photocatalytic degradation with a novel electrospun rGO@TiO2 nanofibrous membrane: Implication for improving photocatalytic efficiency
Tài liệu tham khảo
Jiang, 2019, PPCPs in a drinking water treatment plant in the Yangtze River Delta of China: occurrence, removal and risk assessment, Front. Environ. Sci. Eng., 13, 27, 10.1007/s11783-019-1109-4
Fu, 2019, Pharmaceutical and personal care products: from wastewater treatment into agro-food systems, Environ. Sci. Technol., 53, 14083, 10.1021/acs.est.9b06206
Chen, 2019, Pesticides in stormwater runoff − a mini review, Front. Environ. Sci. Eng., 13, 72, 10.1007/s11783-019-1150-3
Schwarzenbach, 2006, The challenge of micropollutants in aquatic systems, Science, 313, 1072, 10.1126/science.1127291
Rizzo, 2019, Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater, Sci. Total Environ., 655, 986, 10.1016/j.scitotenv.2018.11.265
Lado Ribeiro, 2019, Impact of water matrix on the removal of micropollutants by advanced oxidation technologies, Chem. Eng. J., 363, 155, 10.1016/j.cej.2019.01.080
Hodges, 2018, Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials, Nat. Nanotechnol., 13, 642, 10.1038/s41565-018-0216-x
Kim, 2018, Removal of contaminants of emerging concern by membranes in water and wastewater: a review, Chem. Eng. J., 335, 896, 10.1016/j.cej.2017.11.044
Song, 2020, Highly flexible, core-shell heterostructured, and visible-light-driven titania-based nanofibrous membranes for antibiotic removal and E. coil inactivation, Chem. Eng. J., 379, 10.1016/j.cej.2019.122269
Shenvi, 2015, A review on RO membrane technology: developments and challenges, Desalination, 368, 10, 10.1016/j.desal.2014.12.042
Pastrana-Martínez, 2015, Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water, Water Res., 77, 179, 10.1016/j.watres.2015.03.014
Zhao, 2016, Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment, Appl. Catal. B, 194, 134, 10.1016/j.apcatb.2016.04.042
Shi, 2019, Photocatalytic membrane in water purification: is it stepping closer to be driven by visible light?, J. Membr. Sci., 584, 364, 10.1016/j.memsci.2019.04.078
Li, 2019, Changing conventional blending photocatalytic membranes (BPMs): focus on improving photocatalytic performance of Fe3O4/g-C3N4/PVDF membranes through magnetically induced freezing casting method, Chem. Eng. J., 365, 405, 10.1016/j.cej.2019.02.042
Leong, 2014, TiO2 based photocatalytic membranes: a review, J. Membr. Sci., 472, 167, 10.1016/j.memsci.2014.08.016
Fischer, 2014, Nanoneedle and nanotubular titanium dioxide – PES mixed matrix membrane for photocatalysis, Appl. Catal. B, 160−161, 456, 10.1016/j.apcatb.2014.05.054
Song, 2012, Natural organic matter removal and flux decline with PEG–TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis, J. Membr. Sci., 405−406, 48, 10.1016/j.memsci.2012.02.063
Rahimpour, 2011, TiO2 entrapped nano-composite PVDF/SPES membranes: preparation, characterization, antifouling and antibacterial properties, Desalination, 278, 343, 10.1016/j.desal.2011.05.049
Lee, 2018, Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants, Environ. Sci. Technol., 52, 4285, 10.1021/acs.est.7b06508
Hu, 2011, Hydrothermal growth of free standing TiO2 nanowire membranes for photocatalytic degradation of pharmaceuticals, J. Hazard. Mater., 189, 278, 10.1016/j.jhazmat.2011.02.033
Choi, 2011, Fabrication and photocatalytic activity of a novel nanostructured TiO2 metal membrane, Desalination, 279, 359, 10.1016/j.desal.2011.06.038
Chang, 2017, Effect of post-heat treatment on the photocatalytic activity of titanium dioxide nanowire membranes deposited on a Ti substrate, RSC Adv., 7, 21422, 10.1039/C7RA02092A
Liao, 2018, Progress in electrospun polymeric nanofibrous membranes for water treatment: fabrication, modification and applications, Prog. Polym. Sci., 77, 69, 10.1016/j.progpolymsci.2017.10.003
Liu, 2012, Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane, Water Res., 46, 1101, 10.1016/j.watres.2011.12.009
Nasr, 2017, Enhanced visible-light photocatalytic performance of electrospun rGO/TiO2 composite nanofibers, J. Phys. Chem. C, 121, 261, 10.1021/acs.jpcc.6b08840
Xu, 2018, Noble metal-free RGO/TiO2 composite nanofiber with enhanced photocatalytic H2-production performance, Appl. Surf. Sci., 434, 620, 10.1016/j.apsusc.2017.10.192
Fischer, 2015, Photoactive microfiltration membranes via directed synthesis of TiO2 nanoparticles on the polymer surface for removal of drugs from water, J. Membr. Sci., 478, 49, 10.1016/j.memsci.2015.01.009
Wang, 2018, High performance heterojunction photocatalytic membranes formed by embedding Cu2O and TiO2 nanowires in reduced graphene oxide, Catal. Sci. Technol., 8, 1704, 10.1039/C8CY00082D
Ma, 2010, Performing a microfiltration integrated with photocatalysis using an Ag-TiO2/HAP/Al2O3 composite membrane for water treatment: evaluating effectiveness for humic acid removal and anti-fouling properties, Water Res., 44, 6104, 10.1016/j.watres.2010.06.068
Chen, 2017, An ultrafiltration membrane with enhanced photocatalytic performance from grafted N–TiO2/graphene oxide, RSC Adv., 7, 9880, 10.1039/C6RA27666K
Ni, 2019, Synergistic effect on TiO2 doped poly (vinyl alcohol-co-ethylene) nanofibrous film for filtration and photocatalytic degradation of methylene blue, Compos. Commun., 12, 112, 10.1016/j.coco.2019.01.007
Hu, 2012, Visible light driven photodynamic anticancer activity of graphene oxide/TiO2 hybrid, Carbon, 50, 994, 10.1016/j.carbon.2011.10.002
Kumar, 2007, Structural and optical properties of electrospun TiO2 nanofibers, Chem. Mater., 19, 6536, 10.1021/cm702601t
Gao, 2013, Multifunctional graphene oxide–TiO2 microsphere hierarchical membrane for clean water production, Appl. Catal. B, 138−139, 17, 10.1016/j.apcatb.2013.01.014
Turchi, 1990, Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack, J. Catal., 122, 178, 10.1016/0021-9517(90)90269-P
Lee, 2016, OH radical generation in a photocatalytic reactor using TiO2 nanotube plates, Chemosphere, 149, 114, 10.1016/j.chemosphere.2016.01.103
Alem, 2010, The effect of silver doping on photocatalytic properties of titania multilayer membranes, Solid State Sci., 12, 1469, 10.1016/j.solidstatesciences.2010.06.009
You, 2012, Evaluation of the antifouling and photocatalytic properties of poly(vinylidene fluoride) plasma-grafted poly(acrylic acid) membrane with self-assembled TiO2, J. Hazard. Mater., 237−238, 10, 10.1016/j.jhazmat.2012.07.071
De la Cruz, 2013, Photolysis and TiO2 photocatalysis of the pharmaceutical propranolol: solar and artificial light, Appl. Catal. B, 130−131, 249, 10.1016/j.apcatb.2012.10.003
Rogé, 2018, Photocatalytic degradation behavior of multiple xenobiotics using MOCVD synthesized ZnO nanowires, Catal. Today, 306, 215, 10.1016/j.cattod.2017.05.088
He, 2016, Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation, Appl. Catal. B, 182, 132, 10.1016/j.apcatb.2015.09.015
Ramasundaram, 2013, Titanium dioxide nanofibers integrated stainless steel filter for photocatalytic degradation of pharmaceutical compounds, J. Hazard. Mater., 258−259, 124, 10.1016/j.jhazmat.2013.04.047
Maeng, 2015, Substrate-immobilized electrospun TiO2 nanofibers for photocatalytic degradation of pharmaceuticals: the effects of pH and dissolved organic matter characteristics, Water Res., 86, 25, 10.1016/j.watres.2015.05.032