An optimum path to obtain β Cu–Zn–Al by mechanical alloying
Tài liệu tham khảo
Suryanarayana, 2004, 11
Maziarz, 2004, Mechanically alloyed and hot pressed Ni–49.7Ti alloy showing martensitic transformation, Mater. Sci. Eng. A, 375–377, 844, 10.1016/j.msea.2003.10.127
Tang, 1997, Preparation of Cu–Al–Ni-based shape memory alloys by mechanical alloying and powder metallurgy method, J. Mater. Process. Technol., 63, 307, 10.1016/S0924-0136(96)02641-6
Li, 2006, Cu–Al–Ni–Mn shape memory alloy processed by mechanical alloying and powder metallurgy, Mater. Sci. Eng. A, 417, 225, 10.1016/j.msea.2005.10.051
Morris, 1994, Microstructural influence of Mn additions on thermoelastic and pseudoelastic properties of Cu–Al–Ni alloys, Acta Metall., 42, 1583, 10.1016/0956-7151(94)90368-9
Zhang, 1993, Cu-based shape memory powder preparation using the mechanical alloying technique, Mater. Sci. Eng. A, 171, 257, 10.1016/0921-5093(93)90413-9
Ibarra, 2006, Thermo-mechanical characterization of Cu–Al–Ni shape memory alloys elaborated by powder metallurgy, Mater. Sci. Eng. A, 438–440, 782, 10.1016/j.msea.2005.12.053
1992, vol. 5, 103
1994, 489
Elst, 1986, Grain-refinement during solidification of β-Cu based alloys, Z. Metallkde., 77, 421
Morawiec, 1990, Grain refinement of Cu–Zn–Al shape memory alloys, Z. Metallkde., 81, 419
Lee, 1986, Grain refinement of Cu–Zn–Al shape memory alloys, Metallogr, 19, 401, 10.1016/0026-0800(86)90074-1
Pelegrina, 2010, The influence of microstructure on the martensitic transformation in Cu–Zn–Al melt-spun ribbons, Philos. Mag., 90, 2793, 10.1080/14786431003745401
Waseda, 2011, 153
F.C. Gennari, unpublished results.
German, 2005, 209
1994, 493
1994, 31
Massalski, 1963, Alloy phases of the noble metals, Prog. Mater. Sci., 10, 3, 10.1016/0079-6425(63)90008-2
Romero, 2003, Change of entropy in the martensitic transformation and its dependence in Cu-based shape memory alloys, Mater. Sci. Eng. A, 354, 243, 10.1016/S0921-5093(03)00013-3
Suryanarayana, 1999, 323
Toppo, 2011, Flow behaviour and microstructural evolution in cold worked 70:30 α-brass, Mater. Sci. Technol., 27, 136, 10.1179/174328409X422004
Gil, 1998, Kinetic grain growth in -copper shape memory alloys, Mater. Sci. Eng. A, 241, 114, 10.1016/S0921-5093(97)00480-2
Gil, 1998, Effect of cobalt addition on grain growth kinetics in Cu–Zn–Al shape memory alloys, Intermet, 6, 445, 10.1016/S0966-9795(97)00090-3
Günther, 1992, Secondary recrystallisation effects in nanostructured elemental metals, Scripta Metall. Mater., 27, 833, 10.1016/0956-716X(92)90401-Y
Huang, 1993, Calorimetric analysis of the grain growth in nanocrystalline copper samples, Nanostruct. Mater., 2, 587, 10.1016/0965-9773(93)90032-7
Gertsman, 1994, On the room-temperature grain growth in nanocrystalline copper, Scripta Metall. Mater., 30, 577, 10.1016/0956-716X(94)90432-4
Xiao, 2008, Effect of processing of mechanical alloying and powder metallurgy on microstructure and properties of Cu–Al–Ni–Mn alloy, Mater. Sci. Eng. A, 488, 266, 10.1016/j.msea.2007.11.037
Pelegrina, 2000, Calorimetry in Cu–Zn–Al alloys under different structural and microstructural conditions, Mater. Sci. Eng. A, 282, 16, 10.1016/S0921-5093(99)00792-3
