An optimum path to obtain β Cu–Zn–Al by mechanical alloying

Journal of Alloys and Compounds - Tập 573 - Trang 122-127 - 2013
F.G. Sesma1,2, F.C. Gennari1,2,3, J. Andrade-Gamboa3, J.L. Pelegrina1,2,4
1Centro Atómico Bariloche, Av. E. Bustillo 9500, R8402AGP San Carlos de Bariloche, Argentina
2Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
3Departamento Fisicoquímica de Materiales, Centro Atómico Bariloche, CNEA, Av. E. Bustillo 9500, R8402AGP San Carlos de Bariloche, Argentina
4División Física de Metales, Centro Atómico Bariloche, CNEA, Av. E. Bustillo 9500, R8402AGP San Carlos de Bariloche, Argentina

Tài liệu tham khảo

Suryanarayana, 2004, 11 Maziarz, 2004, Mechanically alloyed and hot pressed Ni–49.7Ti alloy showing martensitic transformation, Mater. Sci. Eng. A, 375–377, 844, 10.1016/j.msea.2003.10.127 Tang, 1997, Preparation of Cu–Al–Ni-based shape memory alloys by mechanical alloying and powder metallurgy method, J. Mater. Process. Technol., 63, 307, 10.1016/S0924-0136(96)02641-6 Li, 2006, Cu–Al–Ni–Mn shape memory alloy processed by mechanical alloying and powder metallurgy, Mater. Sci. Eng. A, 417, 225, 10.1016/j.msea.2005.10.051 Morris, 1994, Microstructural influence of Mn additions on thermoelastic and pseudoelastic properties of Cu–Al–Ni alloys, Acta Metall., 42, 1583, 10.1016/0956-7151(94)90368-9 Zhang, 1993, Cu-based shape memory powder preparation using the mechanical alloying technique, Mater. Sci. Eng. A, 171, 257, 10.1016/0921-5093(93)90413-9 Ibarra, 2006, Thermo-mechanical characterization of Cu–Al–Ni shape memory alloys elaborated by powder metallurgy, Mater. Sci. Eng. A, 438–440, 782, 10.1016/j.msea.2005.12.053 1992, vol. 5, 103 1994, 489 Elst, 1986, Grain-refinement during solidification of β-Cu based alloys, Z. Metallkde., 77, 421 Morawiec, 1990, Grain refinement of Cu–Zn–Al shape memory alloys, Z. Metallkde., 81, 419 Lee, 1986, Grain refinement of Cu–Zn–Al shape memory alloys, Metallogr, 19, 401, 10.1016/0026-0800(86)90074-1 Pelegrina, 2010, The influence of microstructure on the martensitic transformation in Cu–Zn–Al melt-spun ribbons, Philos. Mag., 90, 2793, 10.1080/14786431003745401 Waseda, 2011, 153 F.C. Gennari, unpublished results. German, 2005, 209 1994, 493 1994, 31 Massalski, 1963, Alloy phases of the noble metals, Prog. Mater. Sci., 10, 3, 10.1016/0079-6425(63)90008-2 Romero, 2003, Change of entropy in the martensitic transformation and its dependence in Cu-based shape memory alloys, Mater. Sci. Eng. A, 354, 243, 10.1016/S0921-5093(03)00013-3 Suryanarayana, 1999, 323 Toppo, 2011, Flow behaviour and microstructural evolution in cold worked 70:30 α-brass, Mater. Sci. Technol., 27, 136, 10.1179/174328409X422004 Gil, 1998, Kinetic grain growth in -copper shape memory alloys, Mater. Sci. Eng. A, 241, 114, 10.1016/S0921-5093(97)00480-2 Gil, 1998, Effect of cobalt addition on grain growth kinetics in Cu–Zn–Al shape memory alloys, Intermet, 6, 445, 10.1016/S0966-9795(97)00090-3 Günther, 1992, Secondary recrystallisation effects in nanostructured elemental metals, Scripta Metall. Mater., 27, 833, 10.1016/0956-716X(92)90401-Y Huang, 1993, Calorimetric analysis of the grain growth in nanocrystalline copper samples, Nanostruct. Mater., 2, 587, 10.1016/0965-9773(93)90032-7 Gertsman, 1994, On the room-temperature grain growth in nanocrystalline copper, Scripta Metall. Mater., 30, 577, 10.1016/0956-716X(94)90432-4 Xiao, 2008, Effect of processing of mechanical alloying and powder metallurgy on microstructure and properties of Cu–Al–Ni–Mn alloy, Mater. Sci. Eng. A, 488, 266, 10.1016/j.msea.2007.11.037 Pelegrina, 2000, Calorimetry in Cu–Zn–Al alloys under different structural and microstructural conditions, Mater. Sci. Eng. A, 282, 16, 10.1016/S0921-5093(99)00792-3