Multilocus phylogeny of African striped grass mice (Lemniscomys): Stripe pattern only partly reflects evolutionary relationships

Molecular Phylogenetics and Evolution - Tập 155 - Trang 107007 - 2021
Alexandra Hánová1,2, Adam Konečný2, Violaine Nicolas3, Christiane Denys3, Laurent Granjon4, Leonid A. Lavrenchenko5, Radim Šumbera6, Ondřej Mikula1, Josef Bryja1,2
1Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
2Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
3Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP51, 75005 Paris, France
4CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, 755 avenue du Campus Agropolis, CS 30016, 34988 Montferrier-sur-Lez cedex, France
5Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, 119071, Russia
6Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic

Tài liệu tham khảo

Aghová, 2018, Fossils know it best: using a new set of fossil calibrations to improve the temporal phylogenetic framework of murid rodents (Rodentia: Muridae), Mol. Phyogenet. Evol., 128, 98, 10.1016/j.ympev.2018.07.017 Aghová, 2017, Multilocus phylogeny of East African gerbils (Rodentia, Gerbilliscus) illuminates the history of the Somali-Masai savanna, J. Biogeogr., 44, 2295, 10.1111/jbi.13017 Bandelt, 1999, Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 16, 37, 10.1093/oxfordjournals.molbev.a026036 Bartáková, 2015, Terrestrial fishes: rivers are barriers to gene flow in annual fishes from the African savanna, J. Biogeogr., 42, 1832, 10.1111/jbi.12567 Begon, 1999, Transmission dynamics of a zoonotic pathogen within and between wildlife host species, Proc. R. Soc. Lond., Series B: Biol. Sci., 266, 1939, 10.1098/rspb.1999.0870 Ben Salem, 2018, Contribution to the study of the genus Lemniscomys (Rodentia: Muridae). Morphometric and molecular approaches, Biologia, 73, 339, 10.2478/s11756-018-0044-3 Bobu, 2008, Photoreceptor organization and phenotypic characterization in retinas of two diurnal rodent species: potential use as experimental animal models for human vision research, Vis. Res., 48, 424, 10.1016/j.visres.2007.08.011 Boratyński, 2017, Repeated evolution of camouflage in speciose desert rodents, Sci. Rep., 7, 1, 10.1038/s41598-017-03444-y Bouckaert, 2014, BEAST 2: a software platform for Bayesian evolutionary analysis, PLoS Comput. Biol., 10, 10.1371/journal.pcbi.1003537 Brouat, 2009, Phylogeography of the Guinea multimammate mouse (Mastomys erythroleucus): a case study for Sahelian species in West Africa, J. Biogeogr., 36, 2237, 10.1111/j.1365-2699.2009.02184.x Bryja, 2019, Diversity and evolution of Africa Grass Rats (Muridae: Arvicanthis) – From radiation in East Africa to repeated colonization of northwestern and southeastern savannas, J. Zoolog. Syst. Evol. Res., 57, 970, 10.1111/jzs.12290 Bryja, 2010, Plio-Pleistocene history of West African Sudanian savanna and the phylogeography of the Praomys daltoni complex (Rodentia): the environment/ geography/genetic interplay, Mol. Ecol., 19, 4783, 10.1111/j.1365-294X.2010.04847.x Bryja, 2018, Differentiation underground: range-wide multilocus genetic structure of the silvery mole-rat does not support current taxonomy based on mitochondrial sequences, Mammal. Biol., 93, 82, 10.1016/j.mambio.2018.08.006 Bryja, 2019, Annotated checklist, taxonomy and distribution of rodents in Ethiopia, Folia Zool., 68, 117, 10.25225/fozo.030.2019 Bryja, 2014, Pan-African phylogeny of Mus (subgenus Nannomys) reveals one of the most successful mammal radiations in Africa, BMC Evol. Biol., 14, 256, 10.1186/s12862-014-0256-2 Burgess, 2008, Estimation of hominoid ancestral population sizes under Bayesian coalescent models incorporating mutation rate variation and sequencing errors, Mol. Biol. Evol., 25, 1979, 10.1093/molbev/msn148 Burgin, 2018, How many species of mammals are there?, J. Mammal., 99, 1, 10.1093/jmammal/gyx147 Castiglia, 2002, Chromosomal evolution in the African Arvicanthine rats (Murinae, Rodentia): comparative cytogenetics of Lemniscomys (L. zebra, L. rosalia, L. striatus), J. Zool. Syst. Evol. Research, 40, 223, 10.1046/j.1439-0469.2002.00185.x Capizzi, 2014, Rating the rat: global patterns and research priorities in impacts and management of rodent pests, Mamm. Rev., 44, 148, 10.1111/mam.12019 Carleton, 1997, Morphological differentiation among Subsaharan and North African populations of the Lemniscomys barbarus complex (Rodentia: Muridae), Proc. Biol. Soc. Wash., 110, 640 Caro, 2005, The adaptive significance of coloration in mammals, Bioscience, 55, 125, 10.1641/0006-3568(2005)055[0125:TASOCI]2.0.CO;2 Caro, 2020, Coloration in mammals, Trends Ecol. Evol., 35, 357, 10.1016/j.tree.2019.12.008 Colangelo, 2013, A mitochondrial phylogeographic scenario for the most widespread African rodent, Mastomys natalensis, Biol. J. Linn. Soc., 108, 901, 10.1111/bij.12013 Cotterill, 2003, A biogeographic review of tsessebe antelopes, Damaliscus lunatus (Bovidae: Alcelaphini), in south-central Africa, Durban Museum Novit., 28, 45 Degnan, 2009, Gene tree discordance, phylogenetic inference and the multispecies coalescent, Trends Ecol. Evol., 24, 332, 10.1016/j.tree.2009.01.009 DeMenocal, 2004, African climate change and faunal evolution during the Pliocene-Pleistocene, Earth Planet. Sci. Lett., 220, 3, 10.1016/S0012-821X(04)00003-2 Denys, 2020, Integrative taxonomy of Guinean Lemniscomys species (Rodentia, Mammalia), J. Vert. Biol., 69, 20008 Denys, 2014, African highlands as mammal diversity hotspots: new records of Lamottemys okuensis Petter, 1986 (Rodentia: Muridae) and other endemic rodents from Mt Oku, Cameroon, Zoosystema, 36, 647, 10.5252/z2014n3a6 Denys, C., Taylor, P.J., Aplin, K.P., 2017. Family Muridae. In: Wilson et al. (Eds.) Hadbook of the Mammals of the World, Volume 7: Rodents II. Lynx Edicions. Dieterlen, 1991, Lemniscomys hoogstraali, an new murid species from Sudan, Bonner Zoologische Beiträge, 42, 11 Denys, 2011, Notes on a faunal survey in Kingu Pira (South Tanzania) with new karyotypes of several small mammals and description of a new Murid species (Mammalia, Rodentia), Zoosystema, 33, 5, 10.5252/z2011n1a1 Dobigny, 2013, Mitochondrial and nuclear genes-based phylogeography of Arvicanthis niloticus (Murinae) and sub-Saharan open habitats Pleistocene history, PLoS ONE, 8, 10.1371/journal.pone.0077815 Dobigny, 2011, A cytotaxonomic and DNA-based survey of rodents from Northern Cameroon and Western Chad, Mammal. Biol., 76, 417, 10.1016/j.mambio.2010.10.002 Ducroz, 1998, A molecular perspective on the systematics and evolution of the genus Arvicanthis (Rodentia, Muridae): Inferences from complete cytochrome b gene sequences, Mol. Phylogenet. Evol., 10, 104, 10.1006/mpev.1997.0477 Ducroz, 2001, An assessment of the systematics of arvicanthine rodents using mitochondrial DNA sequences: evolutionary and biogeographical implications, J. Mammal. Evol., 8, 173, 10.1023/A:1012277012303 Eisentraut, 1968, Beitrag zur Säugetierfauna von Kamerun, Bonner Zool. Beiträge, 19, 1 Ellerman, J.R., 1941. The families and genera of living rodents. Vol II-Muridae. Fennessy, 2016, Multi-locus analyses reveal four giraffe species instead of one, Curr. Biol., 26, 2543, 10.1016/j.cub.2016.07.036 Flouri, 2018, Species tree inference with BPP using genomic sequences and the multispecies coalescent, Mol. Biol. Evol., 35, 2585, 10.1093/molbev/msy147 Gernhard, 2008, Using birth-death model on trees, J. Theor. Biol., 253, 769, 10.1016/j.jtbi.2008.04.005 Gonçalves, 2018, The role of climatic cycles and trans-Saharan migration corridors in species diversification: biogeography of Psammophis schokari group in North Africa, Mol. Phyl. Evol., 118, 64, 10.1016/j.ympev.2017.09.009 Granjon, 2009 Granjon, 2012, Intrageneric relationships within Gerbilliscus (Rodentia, Muridae, Gerbillinae), with characterization of an additional West African species, Zootaxa, 25, 1, 10.11646/zootaxa.3325.1.1 Haupaix, 2020, The embryonic origin of periodic color patterns, Dev. Biol., 460, 70, 10.1016/j.ydbio.2019.08.003 Hoekstra, 2006, Genetics, development and evolution of adaptive pigmentation in vertebrates, Heredity, 97, 222, 10.1038/sj.hdy.6800861 Hollister, N., 1919. East African Mammals in the United States National Museum, Part II: Rodentia, Lagomorpha and Tubulidentata (Vol. 99). US Government Printing Office. Jones, G., 2017. STACEY package documentation: species delimitation and species tree estimation with BEAST2, STACEY verison 1.2.3, www. Indriid.cz. Jones, 2015, DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent, Bioinformatics, 31, 991, 10.1093/bioinformatics/btu770 Kearse, 2012, Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, 28, 1647, 10.1093/bioinformatics/bts199 Kingdon, 2015 Krásová, J., Mikula, O., Bryja, J., Baptista, N.L., Antonio, T., Aghová, T., Šumbera, R., submitted: Biogeography of Angolan rodents: The first glimpse based on phylogenetic evidence. Divers. Distrib. (submitted for publication). Kumar, 2016, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 33, 1870, 10.1093/molbev/msw054 Lado, 2019, The evolutionary history of the Cape hare (Lepus capensis sensu lato): insights for systematics and biogeography, Heredity, 123, 634, 10.1038/s41437-019-0229-8 Lahmam, 2008, Daily behavioral rhythmicity and organization of the suprachiasmatic nuclei in the diurnal rodent, Lemniscomys barbarus, Chronobiol. Int., 25, 882, 10.1080/07420520802553556 Lanfear, 2016, PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses, Mol. Biol. Evol., 34, 772 Lecompte, 2008, Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily, BMC Evol. Biol., 8, 199, 10.1186/1471-2148-8-199 Lecompte, 2002, Cytochrome b-based phylogeny of the Praomys group (Rodentia, Murinae): a new African radiation?, C. R. Biol., 325, 827, 10.1016/S1631-0691(02)01488-9 Lemmon, 2012, Anchored hybrid enrichment for massively highthroughput phylogenomics, Syst. Biol., 61, 727, 10.1093/sysbio/sys049 Librado, 2009, DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 25, 1451, 10.1093/bioinformatics/btp187 Linder, 2012, The partitioning of Africa: statistically defined biogeographical regions in sub-Saharan Africa, J. Biogeogr., 39, 1189, 10.1111/j.1365-2699.2012.02728.x Lorenzen, 2012, Comparative phylogeography of African savannah ungulates, Mol. Ecol., 21, 3656, 10.1111/j.1365-294X.2012.05650.x Mallarino, 2016, Developmental mechanisms of stripe patterns in rodents, Nature, 539, 518, 10.1038/nature20109 Manthi, 2007, A preliminary review of the rodent fauna from Lemudong’o, southwestern Kenya, and its implication to the late Miocene paleoenvironments, Kirtlandia., 56, 92 Mazoch, 2018, Phylogeography of a widespread sub-Saharan murid rodent Aethomys chrysophilus: the role of geographic barriers and paleoclimate in the Zambezian bioregion, Mammalia, 82, 373, 10.1515/mammalia-2017-0001 McDonough, 2015, Multilocus phylogeography of a widespread savanna–woodland-adapted rodent reveals the influence of Pleistocene geomorphology and climate change in Africa's Zambezi region, Mol. Ecol., 24, 5248, 10.1111/mec.13374 Mikula, 2016, Evolutionary history and species diversity of African pouched mice (Rodentia: Nesomyidae: Saccostomus), Zool. Scr., 45, 595, 10.1111/zsc.12179 Mikula, 2020, Comensalism outweighs phylogeographical structure in its effect on phenotype of a Sudanian savannah rodent, Biol. J. Linn. Soc. Lond., 129, 931, 10.1093/biolinnean/blz184 Mikula, O., Nicolas, V., Šumbera, R., Konečný, A., Denys, C., Verheyen, E., Bryjová, A., Lemmon, A.R., Lemmon, E.M., Bryja J., 2020b. Nuclear phylogenomics, but not mitogenomics, resolves the most successful Late Miocene radiation of African mammals (Rodentia: Muridae: Arvicanthini). Mol. Phylogenet. Evol. (under review). Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA, 1–8. Missoup, 2016, Phylogenetic position of the endemic Mount Oku rat, Lamottemys okuensis (Rodentia: Muridae), based on molecular and morphological data, Zool. J. Linn. Soc., 177, 209, 10.1111/zoj.12361 Missoup, 2018, Molecular phylogenetic analyses indicate paraphyly of the genus Hybomys (Rodentia: Muridae): Taxonomic implications, J. Zool. Syst. Evol. Res., 56, 444, 10.1111/jzs.12213 Monadjem, A., Taylor, P.J., Denys, C., Cotterill, F.P.D., 2015. Rodents of Sub-Saharan Africa. A biographic and taxonomic synthesis. Walter de Gruyter GmbH, Berlin/ Munich/Boston. Musser, G.G., Carleton, M.D., 2005. Family Muridae/Wilson, D.E. & Reeder, D.M. In:Mammal species of the world: a taxonomic and geographic reference. Smithsonian Institution Press, Washington, DC, USA, 501–755. Nee, 1994, Extinction rates can be estimated from molecular phylogenies, Philos. Trans. Roy. Soc. London Series B: Biol. Sci., 344, 77, 10.1098/rstb.1994.0054 Nicolas, 2008, Phylogeographic structure and regional history of Lemniscomys striatus (Rodentia: Muridae) in tropical Africa, J. Biogeogr., 35, 2074, 10.1111/j.1365-2699.2008.01950.x Ogilvie, 2017, StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates, Mol. Biol. Evol., 34, 2101, 10.1093/molbev/msx126 Paradis, 2018, Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R, Bioinformatics, 35, 526, 10.1093/bioinformatics/bty633 Petružela, 2018, Spiny mice of the Zambezian bioregion-phylogeny, biogeography and ecological differentiation within the Acomys spinosissimus complex, Mammal. Biol., 91, 79, 10.1016/j.mambio.2018.03.012 Pocock, 1987, Plio-Pleistocene fossil mammalian microfauna of southern Africa: A preliminary report including description of two new fossil muroid genera (Mammalia: Rodentia), Paleontol. Afr., 26, 1 Potts, 2013, Hominin evolution in settings of strong environmental variability, Quat. Sci. Rev., 73, 1, 10.1016/j.quascirev.2013.04.003 R Core Team, 2019 Rambaut, 2018, Posterior summarisation in Bayesian phylogenetics using Tracer 1.7, Syst. Biol., syy032 Rannala, 2003, Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci, Genetics, 164, 1645, 10.1093/genetics/164.4.1645 Reed, 2011, New murid (Mammalia, Rodentia) fossils from a late Pliocene (2.4 Ma) locality, Hadar A. L. 894, Afar Region, Ethiopia, J. Vert. Paleontol., 31, 1326, 10.1080/02724634.2011.620676 Ronquist, 2012, MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space, Syst. Biol., 61, 539, 10.1093/sysbio/sys029 Schliep, 2011, Phangorn: phylogenetic analysis in R, Bioinformatics, 27, 592, 10.1093/bioinformatics/btq706 Ségalen, 2007, Timing of C4 grass expansion across sub-Saharan Africa, J. Hum. Evol., 53, 549, 10.1016/j.jhevol.2006.12.010 Sénégas, F., 2000. Les faunes de rongeurs (Mammalia) plio-pléistocénes de la province de Gauteng (Afrique de Sud): mises au point et apports systématiques, biochronologiques et precisions paléoenvironnementales. PhD, Université de Montpellier, France. Stamatakis, 2014, RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 30, 1312, 10.1093/bioinformatics/btu033 Taylor, 2008, Understanding and managing sanitary risks due to rodent zoonoses in an African city: beyond the Boston Model, Integr. Zool., 3, 38, 10.1111/j.1749-4877.2008.00072.x Trauth, 2009, Trends, rhythms and events in Plio-Pleistocene African climate, Quat. Sci. Rev., 28, 399, 10.1016/j.quascirev.2008.11.003 Trauth, 2005, Late Cenozoic moisture history of East Africa, Science, 309, 2051, 10.1126/science.1112964 Van de Perre, F., Adriaensen, F., Terryn, L., Pauwels, O., Leirs, H., Gilissen, E., Verheyen, E., 2019. African Mammalia, http://projects.biodiversity.be/africanmammalia. Van der Straeten, 1979, Lemniscomys bellieri, a new species of Muridae from the Ivory Coast (Mammalia, Muridae), Rev. Zool. afr., 89, 906 Van der Straeten, 1980, A new species of Lemniscomys (Muridae) from Zambia, Ann. Cape Prov. Museum (Nat. Hist.), 13, 55 Van der Straeten, 1980, Etude biométrique de Lemniscomys linulus (Afrique occidentale) (Mammalia, Muridae), Rev. Zool. Afr., 94, 185 Van der Straeten, 1980, Relations biométriques dans le groupe spécifique Lemniscomys striatus (Mammalia, Muridae), Mammalia, 44, 73, 10.1515/mamm.1980.44.1.73 Velo-Antón, 2018, Living on the edge: ecological and genetic connectivity of the Spiny-footed lizard, Acanthodactylus aureus, confirms the Atlantic Sahara desert as biogeographic corridor and centre of lineage diversification, J. Biogeogr., 45, 1031, 10.1111/jbi.13176 Wesselman, 1984, The Omo micromammals: systematics and paleoecology of early man sites from Ethiopia, Contrib. to Vertebr. Evol., 7 Winkler, A.J., Denys, C., Avery, D.M., 2010. Rodentia, In: Werdelin, L., Sanders, W.J., (Eds.), Cenozoic mammals of Africa. Univ. of California Press, 261–304. Zinner, 2009, Mitochondrial phylogeography of baboons (Papio spp.): indication for introgressive hybridization?, BMC Evol. Biol., 9, 83, 10.1186/1471-2148-9-83