Optimal multivariable conditions in the operation of an absorption heat transformer with energy recycling solved by the genetic algorithm in artificial neural network inverse

Applied Soft Computing - Tập 72 - Trang 218-234 - 2018
R.A. Conde-Gutiérrez1, U. Cruz-Jacobo1, A. Huicochea2, S.R. Casolco2, J.A. Hernández2
1Posgrado en Ingeniería y Ciencias Aplicadas, Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, Mexico
2Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp-IICBA), Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, Mexico

Tài liệu tham khảo

Hernández, 2009, Optimum operating conditions for heat and mass transfer in foodstuffs drying by means of neural network inverse, Food Control, 20, 435, 10.1016/j.foodcont.2008.07.005 Cortés, 2009, Optimization of operating conditions for compressor performance by means of neural network inverse, Appl. Energy, 86, 2487, 10.1016/j.apenergy.2009.03.001 Hamzaoui, 2011, Optimal performance of COD removal during aqueous treatment of alazine and gesaprim commercial herbicides by direct and inverse neural network, Desalination, 277, 325, 10.1016/j.desal.2011.04.060 Labus, 2012, Inverse neural network based control strategy for absorption chillers, Renew. Energy, 39, 471, 10.1016/j.renene.2011.08.036 Laidi, 2013, Optimal solar COP prediction of a solar-assisted adsorption refrigeration system working with activated carbon/methanol as working pairs using direct and inverse artificial neural network, Int. J. Refrig., 36, 247, 10.1016/j.ijrefrig.2012.09.016 Hattab, 2014, Application of an inverse neural network model for the identification of optimal amendment to reduce copper toxicity in phytoremediated contaminated soils, J. Geochem. Explor., 136, 14, 10.1016/j.gexplo.2013.09.002 Nowak, 2016, Using the artificial neural network to control the steam turbine heating process, Appl. Therm. Eng., 108, 204, 10.1016/j.applthermaleng.2016.07.129 Wang, 2018, Decoupling control of vehicle chassis system based on neural network inverse system, Mech. Syst. Signal Process., 106, 176, 10.1016/j.ymssp.2017.12.032 Maehara, 2013, Application of the genetic algorithm and downhill simplex methods (Nelder–Mead methods) in the search for the optimum chiller configuration, Appl. Therm. Eng., 61, 433, 10.1016/j.applthermaleng.2013.08.021 Abdallah el hadj, 2017, Novel approach for estimating solubility of solid drugs in supercritical carbon dioxide and critical properties using direct and inverse artificial neural network (ANN), Neural Comput. Appl., 28, 87, 10.1007/s00521-015-2038-1 Márquez-Nolasco, 2017, Optimization and estimation of the thermal energy of an absorber with graphite disks by using direct and inverse neural network, J. Energy Resour. Technol., 140, 1, 10.1115/1.4036544 Parham, 2013, Alternative absorption heat transformer configurations integrated with water desalination system, Desalination, 328, 74, 10.1016/j.desal.2013.08.013 Zebbar, 2012, Thermodynamic optimization of an absorption heat transformer, Int. J. Refrig., 35, 1393, 10.1016/j.ijrefrig.2012.04.007 Jain, 2017, Energy, exergy, economic (3E) analyses and multi-objective optimization of vapor absorption heat transformer using NSGA-II technique, Energy Convers. Manage., 148, 1096, 10.1016/j.enconman.2017.06.055 Mahmoudi, 2017, Three-objective optimization of a novel triple-effect absorption heat transformer combined with a water desalination system, Energy Convers. Manage., 138, 131, 10.1016/j.enconman.2017.01.057 Siqueiros, 2007, Increase of COP for heat transformer in water purification systems. Part I – increasing heat source temperature, Appl. Therm. Eng., 27, 1043, 10.1016/j.applthermaleng.2006.07.042 Liu, 2018, An artificial neural network developed for predicting of performance and emissions of a spark ignition engine fueled with butanol-gasoline blends, Adv. Mech. Eng., 10, 1, 10.1177/1687814017748438 J.E, 2011, Function chain neural network prediction on heat transfer performance of oscillating heat pipe based on grey relational analysis, J. Cent. South Univ. Technol., 18, 1733, 10.1007/s11771-011-0895-z Morales, 2015, Optimization of an absorption heat transformer with two-duplex components using inverse neural network and solved by genetic algorithm, Appl. Therm. Eng., 85, 322, 10.1016/j.applthermaleng.2015.04.018 Zhang, 2016, Multidisciplinary design optimization of the diesel particulate filter in the composite regeneration process, Appl. Energy, 181, 14, 10.1016/j.apenergy.2016.08.051 Zuo, 2013, Multidisciplinary design optimization on production scale of underground metal mine, J. Cent. South Univ., 20, 1332, 10.1007/s11771-013-1620-x Dao, 2017, An innovative framework for designing genetic algorithm structures, Expert Syst. Appl., 90, 196, 10.1016/j.eswa.2017.08.018 Guerrero, 2017, Adaptive community detection in complex networks using genetic algorithms, Neurocomputing, 266, 101, 10.1016/j.neucom.2017.05.029 Chlumecký, 2017, Application of random number generators in genetic algorithms to improve rainfall-runoff modeling, J. Hydrol., 553, 350, 10.1016/j.jhydrol.2017.08.025 Akbari, 2017, An enhanced genetic algorithm with new operators for task scheduling in heterogeneous computing systems, Eng. Appl. Artif. Intel., 61, 35, 10.1016/j.engappai.2017.02.013 Liu, 2018, An improved genetic algorithm for increasing the addressing accuracy of encoding fiber Bragg grating sensor network, Opt. Fiber Technol., 40, 28, 10.1016/j.yofte.2017.10.005 Höglund, 2017, Tax payment default prediction using genetic algorithm-based variable selection, Expert Syst. Appl., 88, 368, 10.1016/j.eswa.2017.07.027 Hakli, 2017, A novel approach for automated land partitioning using genetic algorithm, Expert Syst. Appl., 82, 10, 10.1016/j.eswa.2017.03.067 Fogue, 2016, Non-emergency patient transport services planning through genetic algorithms, Expert Syst. Appl., 61, 262, 10.1016/j.eswa.2016.05.028 Park, 2016, A genetic algorithm for the vendor-managed inventory routing problem with lost sales, Expert Syst. Appl., 53, 149, 10.1016/j.eswa.2016.01.041 Rodrigues, 2017, Automated recognition of the pericardium contour on processed CT images using genetic algorithms, Comput. Biol. Med., 87, 38, 10.1016/j.compbiomed.2017.05.013 Moradi, 2014, A genetic-multivariable fractional order PID control to multi-input multi-output processes, J. Process Control, 24, 336, 10.1016/j.jprocont.2014.02.006 Donnellan, 2015, Recycling waste heat energy using vapour absorption heat transformers: a review, Renew. Sust. Energy Rev., 42, 1290, 10.1016/j.rser.2014.11.002 Hernández, 2009, Optimum operating conditions for a water purification process integrated to a heat transformer with energy recycling using neural network inverse, Renew. Energy, 34, 1084, 10.1016/j.renene.2008.07.004 Negrov, 2017, An approximate backpropagation learning rule for memristor based neural networks using synaptic plasticity, Neurocomputing, 237, 193, 10.1016/j.neucom.2016.10.061 Shi, 2017, Chaos time-series prediction based on an improved recursive Levenberg–Marquardt algorithm, Chaos Soliton Fractal, 100, 57, 10.1016/j.chaos.2017.04.032 Mukherjee, 2012, Comparing the performance of neural networks developed by using Levenberg–Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process, Expert Syst. Appl., 39, 2397, 10.1016/j.eswa.2011.08.087 Verma, 2005 Holland, 1975 Sheremetov, 2018, Two-stage genetic algorithm for parallel machines scheduling problem: cyclic steam stimulation of high viscosity, Appl. Soft Comput., 64, 317, 10.1016/j.asoc.2017.12.021 Huang, 2015, A proposed iteration optimization approach integrating backpropagation neural network with genetic algorithm, Expert Syst. Appl., 42, 146, 10.1016/j.eswa.2014.07.039 Millo, 2018, Optimization of automotive diesel engine calibration using genetic algorithm techniques, Energy, 158, 807, 10.1016/j.energy.2018.06.044 Fernández, 2018, A GA for the characterization of hyperelastic materials, Appl. Math. Comput., 329, 239 Meza, 2014, Experimental study of an absorption heat transformer with heat recycling to the generator, Exp. Therm. Fluid Sci., 53, 171, 10.1016/j.expthermflusci.2013.12.002 Precup, 2015, Nature-inspired optimal tuning of input membership functions of Takagi-Sugeno-Kang fuzzy models for Anti-lock Braking Systems, App. Soft Comput., 27, 575, 10.1016/j.asoc.2014.07.004 Acan, 2015, A two-stage memory powered Great Deluge algorithm for global optimization, Soft Comput., 19, 2565, 10.1007/s00500-014-1423-5 Shahvari, 2017, An Enhanced tabu search algorithm to minimize a bi-criteria objective in batching and scheduling problems on unrelated-parallel machines with desired lower bounds on batch sizes, Comput. Oper. Res., 77, 154, 10.1016/j.cor.2016.07.021 Saadat, 2017, Training echo estate neural network using harmony search algorithm, Int. J. Artif. Intell., 15, 163 Pal, 2017