Air Electrodes for Flexible and Rechargeable Zn−Air Batteries

SMALL STRUCTURES - Tập 3 Số 1 - 2022
Xiao Xia Wang1,2, Xiaoxuan Yang3, Hui Liu4, Tao Han5, Junhua Hu5, Hongbo Li6, Gang Wu3
1Department of Chemical and Biological Engineering University at Buffalo The State University of New York Buffalo NY 14260 USA
2Department of Chemical and Biological Engineering University at Buffalo The State University of New York Buffalo NY 14260 USA; School of Mechanical and Power Engineering East China University of Science and Technology Shanghai 200237 China
3Department of Chemical and Biological Engineering University at Buffalo The State University of New York Buffalo NY 14260 USA
4Shanghai Power and Energy Storage Battery System Engineering Tech. Co. Ltd. Shanghai 200241 China
5School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
6School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China

Tóm tắt

Rechargeable Zn−air batteries (ZABs) have attracted increasing attention as one of the most promising future energy power sources due to their relatively high specific energy density, environmental friendliness, safety, and low cost. In particular, flexible ZABs are desirable for portable and wearable electronic devices, in which the cathode can utilize air directly from the atmosphere with significantly enhanced energy density. Therefore, the air electrode consisting of oxygen electrocatalysts is the most critical component in flexible ZABs, significantly governing the overall battery performance and cost. This review highlights recent achievements in designing efficient oxygen electrocatalysts and air electrodes for rechargeable and flexible ZABs. First, the most significant innovations of recent battery configurations to improve flexibility and battery performance are introduced. Then, oxygen electrocatalysts developed for fabricating high‐performance air cathodes in flexible ZABs in terms of catalyst properties, unique nanostructures, and morphologies are emphasized. Furthermore, effective architectures of air electrodes are discussed to highlight structural stability and charge/mass transports for improving battery performance. Finally, a perspective for designing durable and high‐power air electrodes for flexible ZABs is provided, aiming to summarize current challenges and possible solutions to commercialize the exciting battery technology eventually.

Từ khóa


Tài liệu tham khảo

10.1002/adma.202000381

10.1002/admt.202000476

10.1039/D0EE00039F

10.1002/adma.201902062

10.1039/C7TA09301B

10.1002/aenm.201402115

10.1002/adma.201305919

10.1039/C7MH00358G

10.1002/advs.201700691

10.1002/smll.202006773

10.1002/smll.201801929

10.1039/C7EE01913K

10.1007/s40820-021-00669-5

10.1002/aenm.201700467

10.1016/j.jpowsour.2017.08.062

10.1039/C9TA14231B

10.1002/sstr.202000128

10.1002/adfm.201701833

10.1002/adma.201704117

10.1002/advs.201900628

10.1002/adma.201502853

10.1002/adma.201600762

10.1002/smtd.202000868

10.1002/anie.201508848

10.1039/D0TA11068J

10.1016/j.enchem.2021.100055

10.1039/C8EE00977E

10.1002/aenm.201700779

10.1021/acsami.0c17479

10.1016/j.nanoen.2020.104812

10.1002/smll.202006262

10.1016/j.nanoen.2017.06.045

10.1021/acsnano.7b09064

10.1016/j.jechem.2019.04.005

10.1002/adma.201404639

10.1002/aenm.201803046

10.1021/jacs.6b05046

10.1016/j.ensm.2018.06.001

10.1016/j.nanoen.2018.06.023

10.1039/C9NR07270E

10.1002/smll.201702987

10.1002/adma.201703657

10.1039/D0NR02376K

10.1039/C9NR09779A

10.1016/j.apcatb.2019.118209

10.1039/C9TA04569D

10.1039/C7SE00413C

10.1002/adma.201805230

10.1016/j.nanoen.2019.104208

10.1002/aenm.201702900

10.1039/C4NR05988C

10.1002/adma.201805268

10.1039/C9TA01482A

10.1002/cssc.201903071

10.1039/C9TA00302A

10.1002/anie.201908736

10.1002/smll.202001743

10.1002/aenm.201301389

10.1002/anie.201701531

10.1002/adma.201807468

10.1016/j.apcatb.2020.118953

10.1039/C9TA05719F

10.1039/C9TA09873A

10.1021/acsami.0c14920

10.1039/D0TA05774F

10.1016/j.apcatb.2019.02.033

10.1021/acsami.0c11185

10.1039/D0TA00554A

10.1002/aenm.201800612

10.1149/1945-7111/ab84f6

10.1002/adma.201806761

10.1002/adma.201900843

10.1016/j.ensm.2018.11.034

10.1002/eom2.12067

10.1002/adfm.201906081

10.1016/j.jechem.2020.07.012

10.1016/j.carbon.2018.12.055

10.1002/cey2.50

10.1002/adfm.202003407

10.1002/adma.202003577

10.1016/j.nanoen.2019.104051

10.1002/adma.201901666

10.1002/smll.202001171

10.1002/aenm.201602420

10.1039/D0TA05510G

10.1002/anie.201809009

10.1039/C9TA13651G

10.1002/anie.201915836

10.1007/s12274-020-3127-8

10.1002/smll.202007239

10.1002/aenm.201800480

10.1016/j.nanoen.2019.104293

10.1002/smll.202006183

10.1039/D0TA03288C

10.1002/chem.201904685

10.1021/acsaem.0c02234

10.1002/aenm.201903003

10.1002/chem.201904722

10.1039/C8EE02679C

10.1002/chem.201902389

10.1002/adfm.201908167

10.1021/acssuschemeng.9b02884

10.1016/j.apcatb.2020.118729

10.1021/jacs.5b03426

10.1021/acsnano.9b02315

10.1039/C7TA06243E

10.1002/adfm.201904481

10.1002/aenm.201502333

10.1002/cctc.201802013

10.1021/acs.jpcc.6b05230

10.1039/C8NR01381K

10.1021/acsaem.0c01931

10.1002/smll.201903610

10.1016/j.ensm.2021.01.015

10.1002/adfm.201804846

10.1002/smll.202000797

10.1002/smll.202004661

10.1021/acsami.9b08424

10.1021/acsmaterialslett.0c00339

10.1016/j.apcatb.2020.119086

10.1016/j.apcatb.2020.119104

10.1016/j.apcatb.2019.117893

10.1021/acs.nanolett.0c00717

10.1002/aenm.201703623

10.1002/adfm.201906316

10.1021/acsami.1c00484

10.1021/acsami.8b20003

10.1002/adma.202002292

10.1021/nn203393d

10.1016/j.jallcom.2021.158918

10.1002/adma.201601406

10.1002/cctc.201901707

10.1002/smll.202006473

10.1002/smll.202004809

10.1002/sstr.202100007

10.1039/C9CS00903E

10.1016/j.mattod.2020.02.019

10.1002/aenm.201902844

10.1038/s41929-019-0304-9

10.1002/anie.202017288

10.1002/anie.201909312

10.1038/s41929-018-0164-8

10.1021/acscatal.0c02490

10.1039/D0EE01968B

10.1002/aenm.201900149

10.1002/adma.201706758

10.1002/aenm.201803628

10.1002/smll.202002518

10.1016/j.nanoen.2019.01.011

10.1002/adma.201900592

10.1002/adma.201808267

10.1002/aenm.202002896

10.1039/D0TA03457F

10.1002/smll.201900307

10.1021/acs.energyfuels.0c02512

10.1002/anie.201804349

10.1021/acsaem.9b01614

10.1016/j.apcatb.2020.118746

10.1002/adma.201905622

10.1039/D0TA04633G

10.1002/smll.201702002

10.1002/cey2.60

10.1021/acscatal.7b02739

10.1016/j.jcis.2019.02.044

10.1002/smll.201902081

10.1002/smll.202004342

10.1021/acs.chemmater.8b04572

10.1039/C6TA09615H

10.1039/C8EE03276A

10.1002/adfm.201705356

10.1021/acsaem.8b00583

10.1002/aenm.201900945

10.1021/acsaem.8b02101

Wu M., 2018, J. Mater. Chem. A, 6

10.1016/j.nanoen.2019.03.084

10.1021/acsnano.7b07473

10.1016/j.ensm.2018.03.022

10.1002/aenm.201703539

10.1002/er.6247

10.1016/j.isci.2020.101404

10.1039/C6EE03265F

10.1002/sstr.202000042

10.1016/j.ensm.2019.05.018

10.1002/smll.202006766

10.1021/acsomega.9b02740

10.1039/C8CS00237A

10.1039/C9NR06721C

10.1021/acsami.7b18684

10.1039/C7TA09958D

10.1002/aenm.201900911

10.1021/acsami.9b04217

10.1021/acsaem.9b00675

10.1002/aenm.201700927

10.1007/s40820-020-0406-6

10.1002/adma.201506112

10.1021/acssuschemeng.9b04327

10.1002/smll.201704207

10.1021/acsami.8b05215

10.1002/smll.201700518

10.1039/C9TA07681F

10.1002/sstr.202000047

Xia C., Small Sci., 2100010

10.1002/advs.201800760

10.1002/smll.202002902

10.1016/j.nanoen.2017.05.016

10.1021/acssuschemeng.0c08727

10.1016/j.cej.2019.03.147

Liu L., 2019, Small Methods, 1900571

10.1016/j.apcatb.2019.117887

10.1002/adma.201602868

10.1039/C8TA02608D

10.1002/smll.201803409

10.1021/acsami.7b17002

10.1002/smll.202007085

10.1002/adfm.201906477

10.1021/acscatal.8b02556

10.1016/j.carbon.2018.10.064

10.1039/C7SE00346C

10.1088/1361-6528/ab6cd9

10.1002/advs.201802243

10.1021/acssuschemeng.9b05754

10.1039/C9TA09137H

10.1016/j.ensm.2019.12.043

10.1021/acsami.9b19193

10.1021/acsami.0c09794

10.1039/D0TA00014K