Predicting memorability of images using attention-driven spatial pooling and image semantics
Tài liệu tham khảo
Potter, 1976, Short-term conceptual memory for pictures, J. Exp. Psychol. Hum. Learn. Mem., 2, 509, 10.1037/0278-7393.2.5.509
Schyns, 1994, From blobs to boundary edges: evidence for time- and spatial-scale-dependent scene recognition, Psychol. Sci., 5, 195, 10.1111/j.1467-9280.1994.tb00500.x
Shepard, 1967, Recognition memory for words, sentences, and pictures, J. Verbal Learn. Verbal Behav., 6, 156, 10.1016/S0022-5371(67)80067-7
Brady, 2008, Visual long-term memory has a massive storage capacity for object details, Proc. Natl. Acad. Sci. U. S. A., 105, 14325, 10.1073/pnas.0803390105
Standing, 1973, Learning 10,000 pictures, Q. J. Exp. Psychol., 25, 207, 10.1080/14640747308400340
Wolfe, 1998, Visual memory: what do you know about what you saw?, Curr. Biol., 8, 303, 10.1016/S0960-9822(98)70192-7
Wolfe, 2007, Is visual attention required for robust picture memory?, Vis. Res., 47, 955, 10.1016/j.visres.2006.11.025
Oliva, 2001, Modeling the shape of the scene: a holistic representation of the spatial envelope, Int. J. Comput. Vis., 42, 145, 10.1023/A:1011139631724
Isola, 2011, What makes an image memorable?, 145
Isola, 2011, Understanding the intrinsic memorability of images, 2429
Khosla, 2012, Memorability of image regions, 305
Kim, 2013, Relative spatial features for image memorability, 761
Mancas, 2013, Memorability of natural scenes: the role of attention, 196
Isola, 2014, What makes a photograph memorable?, IEEE Trans. Pattern Anal. Mach. Intell., 36, 1469, 10.1109/TPAMI.2013.200
Erdem, 2013, Visual saliency estimation by nonlinearly integrating features using region covariances, J. Vis., 13, 1, 10.1167/13.4.11
Hollingworth, 2001, To see and remember: visually specific information is retained in memory from previously attended objects in natural scenes, Psychon. Bull. Rev., 8, 761, 10.3758/BF03196215
Hollingworth, 2002, Accurate visual memory for previously attended objects in natural scenes, J. Exp. Psychol. Hum. Percept. Perform., 28, 113, 10.1037/0096-1523.28.1.113
Cohen, 2011, Natural-scene perception requires attention, Psychol. Sci., 22, 1165, 10.1177/0956797611419168
Inoue, 2012, The role of attention in the contextual enhancement of visual memory for natural scenes, Vis. Cogn., 20, 94, 10.1080/13506285.2011.640648
Bergamo, 2012, Meta-class features for large-scale object categorization on a budget, 3085
Patterson, 2014, The SUN attribute database: beyond categories for deeper scene understanding, Int. J. Comput. Vis., 108, 59, 10.1007/s11263-013-0695-z
Borth, 2013, Large-scale visual sentiment ontology and detectors using adjective noun pairs, 223
Lowe, 2004, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vis., 60, 91, 10.1023/B:VISI.0000029664.99615.94
Dalal, 2005, Histograms of oriented gradients for human detection, vol. 1, 886
Shechtman, 2007, Matching local self-similarities across images and videos, 1
Lazebnik, 2006, Beyond bags of features: spatial pyramid matching for recognizing natural scene categories, vol. 2, 2169
Li, 2010, Object bank: a high-level image representation for scene classification & semantic feature sparsification, 1378
Celikkale, 2013, Visual attention-driven spatial pooling for image memorability, 1
Boureau, 2010, A theoretical analysis of feature pooling in visual recognition, 111
Itti, 1998, A model of saliency-based visual attention for rapid scene analysis, IEEE Trans. Pattern Anal. Mach. Intell., 20, 1254, 10.1109/34.730558
Borji, 2013, State-of-the-art in visual attention modeling, IEEE Trans. Pattern Anal. Mach. Intell., 35, 185, 10.1109/TPAMI.2012.89
Einhäuser, 2008, Objects predict fixations better than early saliency, J. Vis., 8, 1, 10.1167/8.14.18
Elazary, 2008, Interesting objects are visually salient, J. Vis., 8, 1, 10.1167/8.3.3
Alexe, 2010, What is an object?, 73
Deng, 2009, Imagenet: a large-scale hierarchical image database, 248
Bergamo, 2010, PiCoDes: Learning a Compact Code for Novel-Category Recognition, 2088
Plutchik, 1980
Torralba, 2006, Contextual guidance of eye movements and in real-world scenes: the role of global features on object search, Psychol. Rev., 113, 766, 10.1037/0033-295X.113.4.766
Judd, 2009, Learning to predict where humans look, 2106
Zhao, 2012, Learning visual saliency by combining feature maps in a nonlinear manner using AdaBoost, J. Vis., 12, 1, 10.1167/12.6.22
Yang, 2012, Top-down visual saliency via joint CRF and dictionary learning, 2296
Kocak, 2014, Top down saliency estimation via superpixel-based discriminative dictionaries
Xu, 2014, Predicting human gaze beyond pixels, J. Vis., 14, 1, 10.1007/s11263-014-0730-8