Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging
Tài liệu tham khảo
Torchilin, 2006, Multifunctional nanocarriers, Adv Drug Deliv Rev, 58, 1532, 10.1016/j.addr.2006.09.009
Chan, 2009, PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery, Biomaterials, 30, 1627, 10.1016/j.biomaterials.2008.12.013
Kim, 2008, Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery, Adv Mater, 20, 478, 10.1002/adma.200701726
Peer, 2007, Nanocarriers as an emerging platform for cancer therapy, Nat Nanotechnol, 2, 751, 10.1038/nnano.2007.387
Zhang, 2008, Self-assembled lipid–polymer hybrid nanoparticles: a robust drug delivery platform, ACS Nano, 2, 1696, 10.1021/nn800275r
Nasongkla, 2006, Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems, Nano Lett, 6, 2427, 10.1021/nl061412u
Yang, 2007, Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer, Angew Chem Int Ed, 46, 8836, 10.1002/anie.200703554
Monty, 2008, Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery, ACS Nano, 2, 889, 10.1021/nn800072t
Ruan, 2003, Preparation and characterization of poly(lactic acid)–poly(ethylene glycol)–poly(lactic acid) (PLA–PEG–PLA) microspheres for controlled release of paclitaxel, Biomaterials, 24, 5037, 10.1016/S0142-9612(03)00419-8
Discher, 2002, Polymer vesicles, Science, 297, 967, 10.1126/science.1074972
Rafat, 2010, PEG–PLA microparticles for encapsulation and delivery of Tat-EGFP to retinal cells, Biomaterials, 31, 3414, 10.1016/j.biomaterials.2010.01.031
Karve, 2010, The pH-dependent association with cancer cells of tunable functionalized lipid vesicles with encapsulated doxorubicin for high cell-kill selectivity, Biomaterials, 31, 4409, 10.1016/j.biomaterials.2010.01.064
Westhaus, 2001, Triggered release of calcium from lipid vesicles: a bioinspired strategy for rapid gelation of polysaccharide and protein hydrogels, Biomaterials, 22, 453, 10.1016/S0142-9612(00)00200-3
Xu, 2009, Development of pH-responsive core–shell nanocarriers for delivery of therapeutic and diagnostic agents, Bioorg Med Chem Lett, 19, 1030, 10.1016/j.bmcl.2008.01.043
Savic, 2006, Assessment of the integrity of poly(caprolactone)-b-poly(ethylene oxide) micelles under biological conditions: a fluorogenic-based approach, Langmuir, 22, 3570, 10.1021/la0531998
Cai, 2007, Micelles of different morphologies-advantages of wormlike filomicelles of PEO-PCL in paclitaxel delivery, Pharm Res, 24, 2099, 10.1007/s11095-007-9335-z
Geng, 2005, Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles, J Am Chem Soc, 127, 12780, 10.1021/ja053902e
Shuai, 2004, Core-cross-linked polymeric micelles as paclitaxel carriers, Bioconjug Chem, 15, 441, 10.1021/bc034113u
Iijima, 1999, Core-polymerized reactive micelles from heterotelechelic amphiphilic block copolymers, Macromolecules, 32, 1140, 10.1021/ma9815962
Sun, 2005, An assessment of the effects of shell crosslinked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution, Biomacromolecules, 6, 2541, 10.1021/bm050260e
Du, 2009, Vesicle formation of PLAx-PEG44 diblock copolymers, Macromolecules, 42, 8477, 10.1021/ma9016339
Sun, 2004, Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles, J Am Chem Soc, 126, 273, 10.1021/ja0380852
Olivier, 2002, Synthesis of pegylated immuonanoparticles, Pharm Res, 19, 1137, 10.1023/A:1019842024814
Ciuchi, 1994, Self-recognition and self-assembly of folic acid salts: columnar liquid crystalline polymorphism and the column growth process, J Am Chem Soc, 116, 7064, 10.1021/ja00095a008
Hilgenbrink, 2005, Folate receptor-mediated drug targeting: from therapeutics to diagnostics, J Pharm Sci, 94, 2135, 10.1002/jps.20457
Luo, 2001, Thermodynamic stabilization mechanism of block copolymer vesicles, J Am Chem Soc, 123, 1012, 10.1021/ja005824v
Bareford, 2007, Endocytic mechanisms for targeted drug delivery, Adv Drug Deliv Rev, 59, 748, 10.1016/j.addr.2007.06.008
Tong, 2007, Anticancer polymeric nanomedicines, Polym Rev, 47, 345, 10.1080/15583720701455079
He, 2009, Corona-cross-linked polymer vesicles displaying a large and reversible temperature-responsive volume transition, Macromolecules, 42, 7267, 10.1021/ma901817k
Nardin, 2000, Polymerized ABA triblock copolymer vesicles, Langmuir, 16, 1035, 10.1021/la990951u
Shuai, 2004, Micellar carrier based on block copolymers of poly(ɛ-caprolactone) and poly(ethylene glycol) for doxorubicin delivery, J Control Release, 98, 415, 10.1016/j.jconrel.2004.06.003
Prabaharan, 2009, Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery, Biomaterials, 30, 6065, 10.1016/j.biomaterials.2009.07.048
Gabbay, 1976, Interaction specificity of the anthracyclines with DNA, Biochemistry, 15, 2062, 10.1021/bi00655a006
Rohrer, 2005, Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths, Invest Radiol, 40, 715, 10.1097/01.rli.0000184756.66360.d3
Russier, 2003, Hysteresis curve of magnetic nanocrytals monolayers: influence of the structure, J Appl Phys, 93, 10001, 10.1063/1.1573343