Optimization of parallel test task scheduling with constraint satisfaction

Jinsheng Gao1, Xiaomin Zhu1, Runtong Zhang2
1School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, No.3 Shangyuancun, Haidian District, Beijing 100044, China
2School of Economics and Management, Beijing Jiaotong University, No.3 Shangyuancun Haidian District, Beijing, 100044, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Jain V, Grossmann IE (1999) Resource-constrained scheduling of tests in new product development. Ind Eng Chem Res 38(8):3013–3026. https://doi.org/10.1021/ie9807809

Yang Z, Xiao H-S, Guan R, Yang Y, Ji H-L (2021) Task scheduling for multiunit parallel test using mixed-integer linear programming. Math Probl Eng 2021:1–13. https://doi.org/10.1155/2021/3785452

Sulaiman M, Halim Z, Waqas M, Aydın D (2021) A hybrid list-based task scheduling scheme for heterogeneous computing. J Supercomput 77(9):10252–10288. https://doi.org/10.1007/s11227-021-03685-9

Sharma R, Nitin N, AlShehri MAR, Dahiya D (2021) Priority-based joint EDF–RM scheduling algorithm for individual real-time task on distributed systems. J Supercomput 77(1):890–908. https://doi.org/10.1007/s11227-020-03306-x

Liao X, Zhang H, Koshimura M, Huang R, Yu W, Li F (2021) Modeling and solving scheduling in overloaded situations with weighted partial MaxSat. Math Probl Eng 2021:1–17. https://doi.org/10.1155/2021/9615463

Lu H, Zhu Z, Wang X, Yin L (2014) A variable neighborhood moea/d for multiobjective test task scheduling problem. Math Probl Eng 2014:1–14. https://doi.org/10.1155/2014/423621

Lu H, Yin L, Wang X, Zhang M, Mao K (2014) Chaotic multiobjective evolutionary algorithm based on decomposition for test task scheduling problem. Math Probl Eng 2014:1–25. https://doi.org/10.1155/2014/640764

Lu H, Xu X, Zhang M, Yin L (2015) Dynamic multi-objective evolutionary algorithm based on decomposition for test task scheduling problem. In: 2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP), IEEE, Wuhan, China, pp 11–18. https://doi.org/10.1109/ICICIP.2015.7388136

Lu H, Niu R, Liu J, Zhu Z (2013) A chaotic non-dominated sorting genetic algorithm for the multi-objective automatic test task scheduling problem. Appl Soft Comput 13(5):2790–2802. https://doi.org/10.1016/j.asoc.2012.10.001

Wu H, Nie C, Kuo F-C (2016) The optimal testing order in the presence of switching cost. Inf Softw Technol 80:57–72. https://doi.org/10.1016/j.infsof.2016.08.006

Lu H, Zhou R, Fei Z, Shi J (2018) A multi-objective evolutionary algorithm based on pareto prediction for automatic test task scheduling problems. Appl Soft Comput 66:394–412. https://doi.org/10.1016/j.asoc.2018.02.050

Do Ngoc A-D, Lee S-H, Moon I (2014) Hybrid genetic algorithm for test bed scheduling problems. Int J Prod Res 52(4):1074–1089. https://doi.org/10.1080/00207543.2013.838327

Lu H, Zhang M (2015) Non-integrated algorithm based on eda and tabu search for test task scheduling problem. In: 2015 IEEE AUTOTESTCON, IEEE, National Harbor, MD, USA, pp 261–268. https://doi.org/10.1109/AUTEST.2015.7356500

Shi J, Lu H, Mao K (2016) Solving the test task scheduling problem with a genetic algorithm based on the scheme choice rule. In: Tan Y, Shi Y, Li L (eds) Advances in swarm intelligence, vol 9713. Springer, Cham, pp 19–27. https://doi.org/10.1007/978-3-319-41009-8_3. https://data.mendeley.com/datasets/bp8gf34wnm

Zhang Y, Jiang S, Wang X, Chen R, Zhang M (2019) An optimization algorithm applied to the class integration and test order problem. Soft Comput 23(12):4239–4253. https://doi.org/10.1007/s00500-018-3077-1

Dohmen M (1995) A survey of constraint satisfaction techniques for geometric modeling. Comput Graph 19(6):831–845. https://doi.org/10.1016/0097-8493(95)00055-0

Hower W (1995) Constraint satisfaction-algorithms and complexity analysis. Inf Process Lett 55(3):171–178. https://doi.org/10.1016/0020-0190(95)00089-U

Barták R, Salido MA (2011) Constraint satisfaction for planning and scheduling problems. Constraints 16(3):223–227. https://doi.org/10.1007/s10601-011-9109-4

Guan B, Zhao Y, Li Y (2019) An ant colony optimization based on information entropy for constraint satisfaction problems. Entropy 21(8):766. https://doi.org/10.3390/e21080766

Kupriyanov BV, Lazarev AA (2021) Optimization of a recursive conveyor by reduction to a constraint satisfaction problem. Autom Remote Control 82(11):1892–1906. https://doi.org/10.1134/S0005117921110059

Grover A, Achim T, Ermon S (2019) Streamlining variational inference for constraint satisfaction problems. J Stat Mech Theory Exp 2019(12):124006. https://doi.org/10.1088/1742-5468/ab371f

Bogaerts B, Gamba E, Guns T (2021) A framework for step-wise explaining how to solve constraint satisfaction problems. Artif Intell 300:103550. https://doi.org/10.1016/j.artint.2021.103550

Habet D, Terrioux C (2021) Conflict history based heuristic for constraint satisfaction problem solving. J Heuristics 27(6):951–990. https://doi.org/10.1007/s10732-021-09475-z

Li H, Feng G, Yin M (2020) On combining variable ordering heuristics for constraint satisfaction problems. J Heuristics 26(4):453–474. https://doi.org/10.1007/s10732-019-09434-9

Meshkati J, Faramarz S-E (2019) Energy-aware resource utilization based on particle swarm optimization and artificial bee colony algorithms in cloud computing. J Supercomput 75(5):2455–2496. https://doi.org/10.1007/s11227-018-2626-9

Du Z, Han D, Li K-C (2019) Improving the performance of feature selection and data clustering with novel global search and elite-guided artificial bee colony algorithm. J Supercomput 75(8):5189–5226. https://doi.org/10.1007/s11227-019-02786-w

Maravelias CT, Grossmann IE (2004) Optimal resource investment and scheduling of tests for new product development. Comput Chem Eng 28(6–7):1021–1038. https://doi.org/10.1016/j.compchemeng.2003.09.019

Christos MT, Ignacio GE (2006) Logic inference and a decomposition algorithm for the resource-constrained scheduling of testing tasks in the development of new pharmaceutical and agrochemical products. In: Handbook on Modelling for Discrete Optimization. International Series in Operations Research & Management Science, vol 88. Springer, New York, pp 265–289. https://doi.org/10.1007/0-387-32942-0_9

Sundar S, Suganthan PN, Jin CT, Xiang CT, Soon CC (2017) A hybrid artificial bee colony algorithm for the job-shop scheduling problem with no-wait constraint. Soft Comput 21(5):1193–1202. https://doi.org/10.1007/s00500-015-1852-9

Gao J, Zhu X, Bai K, Zhang R (2021) New controllable processing time scheduling with subcontracting strategy for no-wait job shop problem. Int J Prod Res. https://doi.org/10.1080/00207543.2021.1886368

Gao J, Zhu X, Zhang R (2022) A branch-and-price approach to the multitasking scheduling with batch control on parallel machines. Int Trans Oper Res. https://doi.org/10.1111/itor.13110

Samarghandi H (2019) Solving the no-wait job shop scheduling problem with due date constraints: a problem transformation approach. Comput Ind Eng 136:635–662. https://doi.org/10.1016/j.cie.2019.07.054