Poly(1,20-eicosanediyl 2,5-furandicarboxylate), a biodegradable polyester from renewable resources
Tài liệu tham khảo
Williams, 2008, Polymers from renewable resources: a perspective for a special issue of polymer reviews, Polym. Rev., 48, 1, 10.1080/15583720701834133
Tsui, 2013, Biodegradable polyesters from renewable resources, Annu. Rev. Chem. Biomol. Eng., 143, 10.1146/annurev-chembioeng-061312-103323
Tsanaktsis, 2015, Sustainable, eco-friendly polyesters synthesized from renewable resources: preparation and thermal characteristics of poly(dimethyl-propylene furanoate), Polym. Chem., 6, 8284, 10.1039/C5PY01367D
Walther, 2014, High-performance polymers from nature: catalytic routes and processes for industry, ChemSusChem, 7, 2081, 10.1002/cssc.201402379
Peplow, 2016, The plastics revolution: how chemists are pushing polymers to new limits, Nature, 536, 266, 10.1038/536266a
Vilela, 2014, The quest for sustainable polyesters – insights into the future, Polym. Chem., 5, 3119, 10.1039/C3PY01213A
Sousa, 2015, Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency, Polym. Chem., 6, 5961, 10.1039/C5PY00686D
Sousa, 2015, Poly(ethylene terephthalate): copolyesters, composites and renewable alternatives, 113
Llevot, 2016, Renewability is not enough: recent advances in the sustainable synthesis of biomass-derived monomers and polymers, Chem. – A Eur. J., 22, 11510, 10.1002/chem.201602068
Gandini, 2009, The furan counterpart of poly (ethylene terephthalate): an alternative material based on renewable resources, J. Polym. Sci. Polym. Chem., 5, 295, 10.1002/pola.23130
Gomes, 2011, Synthesis and characterization of poly(2,5-furan dicarboxylate)s based on a variety of diols, J. Polym. Sci. Polym. Chem., 49, 3759, 10.1002/pola.24812
Ma, 2012, Synthesis and crystallinity of poly(butylene 2,5-furandicarboxylate), Polymer, 53, 4145, 10.1016/j.polymer.2012.07.022
Gubbels, 2013, Synthesis and characterization of novel renewable polyesters based on 2,5-furandicarboxylic acid and 2,3-butanediol, J. Polym. Sci. Polym. Chem., 51, 890, 10.1002/pola.26446
Papageorgiou, 2014, Evaluation of polyesters from renewable resources as alternatives to the current fossil-based polymers. Phase transitions of poly(butylene 2,5-furan-dicarboxylate), Polymer, 55, 3846, 10.1016/j.polymer.2014.06.025
Pan, 2013, Catalytic conversion of furfural into a 2,5-furandicarboxylic acid-based polyester with total carbon utilization, ChemSusChem, 6, 47, 10.1002/cssc.201200652
Zhu, 2013, Poly(butylene 2,5-furan dicarboxylate), a biobased alternative to PBT: synthesis, physical properties, and crystal structure, Macromolecules, 46, 796, 10.1021/ma3023298
Tsanaktsis, 2015, A facile method to synthesize high molecular weight biobased polyesters from 2,5-furandicarboxylic acid and long chain diols, J. Polym. Sci. Polym. Chem., 53, 2616, 10.1002/pola.27730
Jiang, 2015, A biocatalytic approach towards sustainable furanic–aliphatic polyesters, Polym. Chem., 6, 5198, 10.1039/C5PY00629E
Jiang, 2012, A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources, J. Polym. Sci. Polym. Chem., 50, 1026, 10.1002/pola.25859
Papageorgiou, 2015, Furan-based polyesters from renewable resources: crystallization and thermal degradation behavior of poly(hexamethylene 2,5-furan-dicarboxylate), Eur. Polym. J., 67, 383, 10.1016/j.eurpolymj.2014.08.031
Fehrenbacher, 2009, Synthese und Charakterisierung von Polyestern und Polyamiden auf der Basis von Furan-2,5-dicarbonsäure, Chem. Ing. Tech., 81, 1829, 10.1002/cite.200900090
Terzopoulou, 2016, Thermal degradation of biobased polyesters: kinetics and decomposition mechanism of polyesters from 2,5-furandicarboxylic acid and long-chain aliphatic diols, J. Anal. Appl. Pyrol., 117, 162, 10.1016/j.jaap.2015.11.016
Moore, 1978, Polyesters derived from furan and tetrahydrofuran nuclei, Macromolecules, 11, 568, 10.1021/ma60063a028
Stempfle, 2013, Which polyesters can mimic polyethylene?, Macromol. Rapid Commun., 34, 47, 10.1002/marc.201200611
Trzaskowski, 2011, Aliphatic long-chain C(20) polyesters from olefin metathesis, Macromol. Rapid Commun., 32, 1352, 10.1002/marc.201100319
Stempfle, 2014, Long-chain aliphatic polyesters from plant oils for injection molding, film extrusion and electrospinning, Green Chem., 16, 2008, 10.1039/c4gc00114a
Stempfle, 2011, Long-chain linear C19 and C23 monomers and polycondensates from unsaturated fatty acid esters, Macromolecules, 44, 4159, 10.1021/ma200627e
Vilela, 2012, Plant oil-based long-chain C26 monomers and their polymers, Macromol. Chem. Phys., 213, 2220, 10.1002/macp.201200332
Sousa, 2008, Synthesis and characterization of novel biopolyesters from suberin and model comonomers, ChemSusChem, 1, 1020, 10.1002/cssc.200800178
Sousa, 2011, Novel suberin-based biopolyesters: from synthesis to properties, J. Polym. Sci. Part A Polym. Chem., 49, 2281, 10.1002/pola.24661
Sousa, 2012, Synthesis of aliphatic suberin-like polyesters by ecofriendly catalytic systems, High Perform. Polym., 24, 4, 10.1177/0954008311431114
Pepels, 2015, Block copolymers of “PE-Like” Poly(pentadecalactone) and Poly(l-lactide): synthesis, properties, and compatibilization of Polyethylene/Poly(l-lactide) blends, Macromolecules, 48, 6909, 10.1021/acs.macromol.5b01620
Peacock, 2000
Lligadas, 2013, Renewable polymeric materials from vegetable oils: a perspective, Mater. Today, 16, 337, 10.1016/j.mattod.2013.08.016
Pinto, 2009, Quercus suber and Betula pendula outer barks as renewable sources of oleochemicals: a comparative study, Ind. Crops Prod., 29, 126, 10.1016/j.indcrop.2008.04.015
Ferreira, 2013, Isolation of suberin from birch outer bark and cork using ionic liquids: a new source of macromonomers, Ind. Crops Prod., 44, 520, 10.1016/j.indcrop.2012.10.002
Heredia, 2003, Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer, Biochim. Biophys. Acta, 1620, 1, 10.1016/S0304-4165(02)00510-X
Heredia-Guerrero, 2009, Chemical reactions in 2D: self-assembly and self-esterification of 9(10),16-dihydroxypalmitic acid on mica surface, Langmuir, 25, 6869, 10.1021/la9001412
Sousa, 2012, Synthesis of aliphatic suberin-like polyesters by ecofriendly catalytic systems, High Perform. Polym., 24, 4, 10.1177/0954008311431114
Sousa, 2008, Synthesis and characterization of novel biopolyesters from suberin and model comonomers, ChemSusChem, 1, 1020, 10.1002/cssc.200800178
Quinzler, 2010, Linear semicrystalline polyesters from fatty acids by complete feedstock molecule utilization, Angew. Chem. Int. Ed. Engl., 49, 4306, 10.1002/anie.201001510
Zhao, 2016, Convenient controlled aqueous C1 synthesis of long-chain aliphatic AB, AA, and BB macromonomers for the synthesis of polyesters with tunable hydrocarbon chain segments, ACS Macro Lett., 5, 854, 10.1021/acsmacrolett.6b00427
Unverferth, 2013, Renewable non-isocyanate based thermoplastic polyurethanes via polycondensation of dimethyl carbamate monomers with diols, Macromol. Rapid Commun., 34, 1569, 10.1002/marc.201300503
Portugal, 2010, Hydration of cellulosesilica hybrids assessed by sorption isotherms, J. Phys. Chem. B, 114, 4047, 10.1021/jp911270y
Gruter, 2012, Dam, accelerating research into bio-based FDCA-polyesters by using small scale parallel film reactors, Comb. Chem. High Throughput Screen., 15, 180, 10.2174/138620712798868374
Sousa, 2016, Renewable-based poly((ether)ester)s from 2,5-furandicarboxylic acid, Polymer, 10.1016/j.polymer.2016.06.015
PDF-4+ database, JCPDS – International centre for diffraction data, 2010.
Sousa, 2013, New copolyesters derived from terephthalic and 2,5-furandicarboxylic acids: a step forward in the development of biobased polyesters, Polymer, 54, 513, 10.1016/j.polymer.2012.11.081
Thiyagarajan, 2014, Biobased furandicarboxylic acids (FDCAs): effects of isomeric substitution on polyester synthesis and properties, Green Chem., 16, 1957, 10.1039/C3GC42184H
Calahorra, 1985, Thermal decomposition of Poly(ethylene oxide), poly(methyl methacrylate), and their mixtures by thermogravimetric method, J. Polym. Sci. Polym. Lett., 23, 257, 10.1002/pol.1985.130230509
Vaia, 1997, Relaxations of confined chains in polymer nanocomposites: glass transition properties of poly (ethylene oxide) intercalated in montmorillonite, J. Polym., 35, 59
Singh, 2011, Thermal properties and degradation characteristics of polylactide, linear low density polyethylene, and their blends, Polym. Bull., 66, 939, 10.1007/s00289-010-0367-x
Dikobe, 2010, Comparative study of the morphology and properties of PP/LLDPE/wood powder and MAPP/LLDPE/wood powder polymer blend composites, Exp. Polym. Lett., 4, 729, 10.3144/expresspolymlett.2010.88
Run, 2005, Nonisothermal crystallization and melting behavior of mPE/LLDPE/LDPE ternary blends, Thermochim. Acta, 429, 171, 10.1016/j.tca.2005.03.007
Luyt, 2005, Thermal and mechanical properties of linear low-density polyethylene/low-density polyethylene/wax ternary blends, J. Appl. Polym. Sci., 96, 1748, 10.1002/app.21642
Tadros, 1979, Adsorption and contact angle studies I. Water on smooth carbon, linear polyethylene and stearic acid-coated copper, J. Colloid Interface Sci., 72, 515
Raj, 2002, Moisture-sorption characteristics of starch/low-density polyethylene films, J. Appl. Polym. Sci., 84, 1193, 10.1002/app.10417
Peña, 2006, Long term degradation of poly(epson-caprolactone) films in biologically related fluids, Polym. Degrad. Stab., 91, 1424, 10.1016/j.polymdegradstab.2005.10.016
Matos, 2014, A new generation of furanic copolyesters with enhanced degradability: poly(ethylene 2,5-furandicarboxylate)-co-poly(lactic acid) copolyesters, Macromol. Chem. Phys., 215, 2175, 10.1002/macp.201400175