Poly(1,20-eicosanediyl 2,5-furandicarboxylate), a biodegradable polyester from renewable resources

European Polymer Journal - Tập 90 - Trang 301-311 - 2017
Maria J. Soares1, Patrick-Kurt Dannecker2, Carla Vilela1, José Bastos1, Michael A.R. Meier2, Andreia F. Sousa1,3
1CICECO – Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
2Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Materialwissenschaftliches Zentrum (MZE), Straße am Forum 7, 76131 Karlsruhe, Germany
3CEMUC, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal

Tài liệu tham khảo

Williams, 2008, Polymers from renewable resources: a perspective for a special issue of polymer reviews, Polym. Rev., 48, 1, 10.1080/15583720701834133 Tsui, 2013, Biodegradable polyesters from renewable resources, Annu. Rev. Chem. Biomol. Eng., 143, 10.1146/annurev-chembioeng-061312-103323 Tsanaktsis, 2015, Sustainable, eco-friendly polyesters synthesized from renewable resources: preparation and thermal characteristics of poly(dimethyl-propylene furanoate), Polym. Chem., 6, 8284, 10.1039/C5PY01367D Walther, 2014, High-performance polymers from nature: catalytic routes and processes for industry, ChemSusChem, 7, 2081, 10.1002/cssc.201402379 Peplow, 2016, The plastics revolution: how chemists are pushing polymers to new limits, Nature, 536, 266, 10.1038/536266a Vilela, 2014, The quest for sustainable polyesters – insights into the future, Polym. Chem., 5, 3119, 10.1039/C3PY01213A Sousa, 2015, Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency, Polym. Chem., 6, 5961, 10.1039/C5PY00686D Sousa, 2015, Poly(ethylene terephthalate): copolyesters, composites and renewable alternatives, 113 Llevot, 2016, Renewability is not enough: recent advances in the sustainable synthesis of biomass-derived monomers and polymers, Chem. – A Eur. J., 22, 11510, 10.1002/chem.201602068 Gandini, 2009, The furan counterpart of poly (ethylene terephthalate): an alternative material based on renewable resources, J. Polym. Sci. Polym. Chem., 5, 295, 10.1002/pola.23130 Gomes, 2011, Synthesis and characterization of poly(2,5-furan dicarboxylate)s based on a variety of diols, J. Polym. Sci. Polym. Chem., 49, 3759, 10.1002/pola.24812 Ma, 2012, Synthesis and crystallinity of poly(butylene 2,5-furandicarboxylate), Polymer, 53, 4145, 10.1016/j.polymer.2012.07.022 Gubbels, 2013, Synthesis and characterization of novel renewable polyesters based on 2,5-furandicarboxylic acid and 2,3-butanediol, J. Polym. Sci. Polym. Chem., 51, 890, 10.1002/pola.26446 Papageorgiou, 2014, Evaluation of polyesters from renewable resources as alternatives to the current fossil-based polymers. Phase transitions of poly(butylene 2,5-furan-dicarboxylate), Polymer, 55, 3846, 10.1016/j.polymer.2014.06.025 Pan, 2013, Catalytic conversion of furfural into a 2,5-furandicarboxylic acid-based polyester with total carbon utilization, ChemSusChem, 6, 47, 10.1002/cssc.201200652 Zhu, 2013, Poly(butylene 2,5-furan dicarboxylate), a biobased alternative to PBT: synthesis, physical properties, and crystal structure, Macromolecules, 46, 796, 10.1021/ma3023298 Tsanaktsis, 2015, A facile method to synthesize high molecular weight biobased polyesters from 2,5-furandicarboxylic acid and long chain diols, J. Polym. Sci. Polym. Chem., 53, 2616, 10.1002/pola.27730 Jiang, 2015, A biocatalytic approach towards sustainable furanic–aliphatic polyesters, Polym. Chem., 6, 5198, 10.1039/C5PY00629E Jiang, 2012, A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources, J. Polym. Sci. Polym. Chem., 50, 1026, 10.1002/pola.25859 Papageorgiou, 2015, Furan-based polyesters from renewable resources: crystallization and thermal degradation behavior of poly(hexamethylene 2,5-furan-dicarboxylate), Eur. Polym. J., 67, 383, 10.1016/j.eurpolymj.2014.08.031 Fehrenbacher, 2009, Synthese und Charakterisierung von Polyestern und Polyamiden auf der Basis von Furan-2,5-dicarbonsäure, Chem. Ing. Tech., 81, 1829, 10.1002/cite.200900090 Terzopoulou, 2016, Thermal degradation of biobased polyesters: kinetics and decomposition mechanism of polyesters from 2,5-furandicarboxylic acid and long-chain aliphatic diols, J. Anal. Appl. Pyrol., 117, 162, 10.1016/j.jaap.2015.11.016 Moore, 1978, Polyesters derived from furan and tetrahydrofuran nuclei, Macromolecules, 11, 568, 10.1021/ma60063a028 Stempfle, 2013, Which polyesters can mimic polyethylene?, Macromol. Rapid Commun., 34, 47, 10.1002/marc.201200611 Trzaskowski, 2011, Aliphatic long-chain C(20) polyesters from olefin metathesis, Macromol. Rapid Commun., 32, 1352, 10.1002/marc.201100319 Stempfle, 2014, Long-chain aliphatic polyesters from plant oils for injection molding, film extrusion and electrospinning, Green Chem., 16, 2008, 10.1039/c4gc00114a Stempfle, 2011, Long-chain linear C19 and C23 monomers and polycondensates from unsaturated fatty acid esters, Macromolecules, 44, 4159, 10.1021/ma200627e Vilela, 2012, Plant oil-based long-chain C26 monomers and their polymers, Macromol. Chem. Phys., 213, 2220, 10.1002/macp.201200332 Sousa, 2008, Synthesis and characterization of novel biopolyesters from suberin and model comonomers, ChemSusChem, 1, 1020, 10.1002/cssc.200800178 Sousa, 2011, Novel suberin-based biopolyesters: from synthesis to properties, J. Polym. Sci. Part A Polym. Chem., 49, 2281, 10.1002/pola.24661 Sousa, 2012, Synthesis of aliphatic suberin-like polyesters by ecofriendly catalytic systems, High Perform. Polym., 24, 4, 10.1177/0954008311431114 Pepels, 2015, Block copolymers of “PE-Like” Poly(pentadecalactone) and Poly(l-lactide): synthesis, properties, and compatibilization of Polyethylene/Poly(l-lactide) blends, Macromolecules, 48, 6909, 10.1021/acs.macromol.5b01620 Peacock, 2000 Lligadas, 2013, Renewable polymeric materials from vegetable oils: a perspective, Mater. Today, 16, 337, 10.1016/j.mattod.2013.08.016 Pinto, 2009, Quercus suber and Betula pendula outer barks as renewable sources of oleochemicals: a comparative study, Ind. Crops Prod., 29, 126, 10.1016/j.indcrop.2008.04.015 Ferreira, 2013, Isolation of suberin from birch outer bark and cork using ionic liquids: a new source of macromonomers, Ind. Crops Prod., 44, 520, 10.1016/j.indcrop.2012.10.002 Heredia, 2003, Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer, Biochim. Biophys. Acta, 1620, 1, 10.1016/S0304-4165(02)00510-X Heredia-Guerrero, 2009, Chemical reactions in 2D: self-assembly and self-esterification of 9(10),16-dihydroxypalmitic acid on mica surface, Langmuir, 25, 6869, 10.1021/la9001412 Sousa, 2012, Synthesis of aliphatic suberin-like polyesters by ecofriendly catalytic systems, High Perform. Polym., 24, 4, 10.1177/0954008311431114 Sousa, 2008, Synthesis and characterization of novel biopolyesters from suberin and model comonomers, ChemSusChem, 1, 1020, 10.1002/cssc.200800178 Quinzler, 2010, Linear semicrystalline polyesters from fatty acids by complete feedstock molecule utilization, Angew. Chem. Int. Ed. Engl., 49, 4306, 10.1002/anie.201001510 Zhao, 2016, Convenient controlled aqueous C1 synthesis of long-chain aliphatic AB, AA, and BB macromonomers for the synthesis of polyesters with tunable hydrocarbon chain segments, ACS Macro Lett., 5, 854, 10.1021/acsmacrolett.6b00427 Unverferth, 2013, Renewable non-isocyanate based thermoplastic polyurethanes via polycondensation of dimethyl carbamate monomers with diols, Macromol. Rapid Commun., 34, 1569, 10.1002/marc.201300503 Portugal, 2010, Hydration of cellulosesilica hybrids assessed by sorption isotherms, J. Phys. Chem. B, 114, 4047, 10.1021/jp911270y Gruter, 2012, Dam, accelerating research into bio-based FDCA-polyesters by using small scale parallel film reactors, Comb. Chem. High Throughput Screen., 15, 180, 10.2174/138620712798868374 Sousa, 2016, Renewable-based poly((ether)ester)s from 2,5-furandicarboxylic acid, Polymer, 10.1016/j.polymer.2016.06.015 PDF-4+ database, JCPDS – International centre for diffraction data, 2010. Sousa, 2013, New copolyesters derived from terephthalic and 2,5-furandicarboxylic acids: a step forward in the development of biobased polyesters, Polymer, 54, 513, 10.1016/j.polymer.2012.11.081 Thiyagarajan, 2014, Biobased furandicarboxylic acids (FDCAs): effects of isomeric substitution on polyester synthesis and properties, Green Chem., 16, 1957, 10.1039/C3GC42184H Calahorra, 1985, Thermal decomposition of Poly(ethylene oxide), poly(methyl methacrylate), and their mixtures by thermogravimetric method, J. Polym. Sci. Polym. Lett., 23, 257, 10.1002/pol.1985.130230509 Vaia, 1997, Relaxations of confined chains in polymer nanocomposites: glass transition properties of poly (ethylene oxide) intercalated in montmorillonite, J. Polym., 35, 59 Singh, 2011, Thermal properties and degradation characteristics of polylactide, linear low density polyethylene, and their blends, Polym. Bull., 66, 939, 10.1007/s00289-010-0367-x Dikobe, 2010, Comparative study of the morphology and properties of PP/LLDPE/wood powder and MAPP/LLDPE/wood powder polymer blend composites, Exp. Polym. Lett., 4, 729, 10.3144/expresspolymlett.2010.88 Run, 2005, Nonisothermal crystallization and melting behavior of mPE/LLDPE/LDPE ternary blends, Thermochim. Acta, 429, 171, 10.1016/j.tca.2005.03.007 Luyt, 2005, Thermal and mechanical properties of linear low-density polyethylene/low-density polyethylene/wax ternary blends, J. Appl. Polym. Sci., 96, 1748, 10.1002/app.21642 Tadros, 1979, Adsorption and contact angle studies I. Water on smooth carbon, linear polyethylene and stearic acid-coated copper, J. Colloid Interface Sci., 72, 515 Raj, 2002, Moisture-sorption characteristics of starch/low-density polyethylene films, J. Appl. Polym. Sci., 84, 1193, 10.1002/app.10417 Peña, 2006, Long term degradation of poly(epson-caprolactone) films in biologically related fluids, Polym. Degrad. Stab., 91, 1424, 10.1016/j.polymdegradstab.2005.10.016 Matos, 2014, A new generation of furanic copolyesters with enhanced degradability: poly(ethylene 2,5-furandicarboxylate)-co-poly(lactic acid) copolyesters, Macromol. Chem. Phys., 215, 2175, 10.1002/macp.201400175