Thermodynamic analysis of hybrid two-stage CO2 mechanical compression–ejector cooling cycle

Volodymyr Ierin1, Guangming Chen1,2, Xinyue Hao1,2, Oleksii Volovyk1
1NingboTech University, Ningbo, China
2Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou, China

Tóm tắt

In the present study, the main results of thermodynamic analysis of the hybrid two-stage carbon dioxide (CO2) transcritical mechanical compression–ejector cooling cycle using R245ca are provided. In the proposed cycle, an increase in the energy efficiency of a mechanical compression refrigeration machine (MCRM) is provided by additional supercooling of CO2 after the gas cooler due to the use of cold obtained in an ejector cooling machine (ECM). The ECM uses part of the superheated vapor heat after the high-pressure compressor and the intermediate pressure heat after the low-pressure compressor. This solution provides intermediate cooling of CO2 vapor without using an external cooling medium. The proposed method of computation makes it possible to determine the optimal parameters of the hybrid cooling cycle for the design conditions, ensuring the maximum possible MCRM efficiency. At the same time, the method considers the need to determine the optimal gas cooler pressure – a parameter that has a significant impact on efficiency growth. The effect of the intermediate pressure is extremely insignificant and is defined as the geometric mean value of the product of the gas cooler and evaporator pressures. The results show an increase in efficiency of the two-stage CO2 MCRM by up to 31.6% at high temperatures of the environment. In addition, as a result of the exergy analysis, components have been identified, the improvement of which can lead to an additional increase in the efficiency of the entire system. As follows from the data obtained, the greatest attention should be paid to improving the ejector and reducing throttle losses in the CO2 cycle.

Tài liệu tham khảo

Girotto, S., Minetto, S., & Neksa, P. (2004). Commercial refrigeration system using CO2 as the refrigerant. International Journal of Refrigeration, 27, 717–723. https://doi.org/10.1016/j.ijrefrig.2004.07.004 Mosaffa, A. H., Garousi Farshi, L., Infante Ferreira, C. A., & Rosen, M. A. (2016). Exergoeconomic and environmental analyses of CO2/NH3 cascade refrigeration systems equipped with different types of flash tank intercoolers. Energy Conversion and Management, 117, 442–453. https://doi.org/10.1016/j.enconman.2016.03.053 Robinson, D. M., & Groll, E. A. (1998). Efficiencies of transcritical CO2 cycles with and without an expansion turbine. International Journal of Refrigeration, 21, 577–589. https://doi.org/10.1016/S0140-7007(98)00024-3 Cavallini, A., Cecchinato, L., Corradi, M., Fornasieri, E., & Zilio, C. (2005). Two-stage transcritical carbon dioxide cycle optimisation: A theoretical and experimental analysis. International Journal of Refrigeration, 28, 1274–1283. https://doi.org/10.1016/j.ijrefrig.2005.09.004 Cecchinato, L., Chiarello, M., Corradi, M., Fornasieri, E., Minetto, S., Stringari, P., & Zilio, C. (2009). Thermodynamic analysis of different two-stage transcritical carbon dioxide cycles. International Journal of Refrigeration, 32, 1058–1067. https://doi.org/10.1016/j.ijrefrig.2008.10.001 Ge, Y. T., & Tassou, S. A. (2011). Thermodynamic analysis of transcritical CO2 booster refrigeration systems in supermarket. Energy Conversion and Management, 52, 1868–1875. https://doi.org/10.1016/j.enconman.2010.11.015 Yari, M. (2009). Performance analysis and optimization of a new two-stage ejector-expansion transcritical CO2 refrigeration cycle. International Journal of Thermal Sciences, 48, 1997–2005. https://doi.org/10.1016/j.ijthermalsci.2009.01.013 Manjili, F. E., & Yavari, M. A. (2012). Performance of a new two-stage multi-intercooling transcritical CO2 ejector refrigeration cycle. Applied Thermal Engineering, 40, 202–209. https://doi.org/10.1016/j.applthermaleng.2012.02.014 Bellos, E., & Tzivanidis, C. (2019). A comparative study of CO2 refrigeration systems. Energy Conversion and Management: X, 1, 100002. https://doi.org/10.1016/j.ecmx.2018.100002 Chen, X., Yang, Q., Chi, W., Zhao, Y., Liu, G., & Li, L. (2022). Energy and exergy analysis of NH3/CO2 cascade refrigeration system with subcooling in the low-temperature cycle based on an auxiliary loop of NH3 refrigerants. Energy Reports, 8, 1757–1767. https://doi.org/10.1016/j.egyr.2022.01.004 D’Agaro, P., Coppola, M. A., & Cortella, G. (2021). Effect of dedicated mechanical subcooler size and gas cooler pressure control on transcritical CO2 booster systems. Applied Thermal Engineering, 182, 116145. https://doi.org/10.1016/j.applthermaleng.2020.116145 Aranguren, P., Sánchez, D., Casi, A., Cabello, R., & Astrain, D. (2021). Experimental assessment of a thermoelectric subcooler included in a transcritical CO2 refrigeration plant. Applied Thermal Engineering, 190, 116826. https://doi.org/10.1016/j.applthermaleng.2021.116826 Casi, Á., Aranguren, P., Araiz, M., Sanchez, D., Cabello, R., & Astrain, D. (2022). Experimental evaluation of a transcritical CO2 refrigeration facility working with an internal heat exchanger and a thermoelectric subcooler: Performance assessment and comparative. International Journal of Refrigeration, 141, 66–75. https://doi.org/10.1016/j.ijrefrig.2022.05.024 Huang, C., Li, Z., Ye, Z., & Wang, R. (2022). Thermodynamic study of carbon dioxide transcritical refrigeration cycle with dedicated subcooling and cascade recooling. International Journal of Refrigeration, 137, 80–90. https://doi.org/10.1016/j.ijrefrig.2022.02.004 Yadav, V. K., & Sarkar, J. (2021). Thermodynamic, economic, and environmental analyses of various novel ejector refrigeration subcooled transcritical CO2 systems. International Journal of Energy Research, 45, 16115–16133. https://doi.org/10.1002/er.6841 Dai, B., Yang, H., Liu, S., Liu, C., Wu, T., Li, J., Zhao, J., & Nian, V. (2022). Hybrid solar energy and waste heat driving absorption subcooling supermarket CO2 refrigeration system: Energetic, carbon emission and economic evaluation in China. Solar Energy, 247, 123–145. https://doi.org/10.1016/j.solener.2022.10.009 Huang, B. J., Petrenko, V. A., Chang, J. M., Lin, C. P., & Hu, S. S. (2001). A combined-cycle refrigeration system using ejector-cooling cycle as the bottom cycle. International Journal of Refrigeration, 24, 391–399. https://doi.org/10.1016/S0140-7007(00)00040-2 Chen, G., Volovyk, O., Zhu, D., Ierin, V., & Shestopalov, K. (2017). Theoretical analysis and optimization of a hybrid CO2 transcritical mechanical compression–ejector cooling cycle. International Journal of Refrigeration, 74, 84–92. https://doi.org/10.1016/j.ijrefrig.2016.10.002 Ierin, V., Chen, G., Volovyk, O., & Shestopalov, K. (2021). Hybrid two–stage CO2 transcritical mechanical compression–ejector cooling cycle: Thermodynamic analysis and optimization. International Journal of Refrigeration, 132, 45–55. https://doi.org/10.1016/j.ijrefrig.2021.09.012 Besagni, G., Mereu, R., & Inzoli, F. (2016). Ejector refrigeration: A comprehensive review. Renewable and Sustainable Energy Reviews, 53, 373–407. https://doi.org/10.1016/j.rser.2015.08.059 Shestopalov, K. O., Huang, B. J., Petrenko, V. O., & Volovyk, O. S. (2015). Investigation of an experimental ejector refrigeration machine operating with refrigerant R245fa at design and off-design working conditions. Part 1. Theoretical analysis. International Journal of Refrigeration, 55, 201–211. https://doi.org/10.1016/j.ijrefrig.2015.01.016 Chen, Y., & Gu, J. (2005). The optimum high pressure for CO2 transcritical refrigeration systems with internal heat exchangers. International Journal of Refrigeration, 28, 1238–1249. https://doi.org/10.1016/j.ijrefrig.2005.08.009 Baek, J. S., Groll, E. A., Lawless, P. B. (2002). Effect of pressure ratios across compressors on the performance of the transcritical carbon dioxide cycle with two-state compression and intercooling. In The proceedings of the 9th International Refrigeration Conference, Purdue University, West Lafayette, USA, Paper ID: 583. Shestopalov, K. O., Huang, B. J., Petrenko, V. O., & Volovyk, O. S. (2015). Investigation of an experimental ejector refrigeration machine operating with refrigerant R245fa at design and off-design working conditions. Part 2. Theoretical and experimental results. International Journal of Refrigeration, 55, 212–223. https://doi.org/10.1016/j.ijrefrig.2015.02.004 Bejan, A., Tsatsaronis, G., & Moran, M. (1996). Thermal design and optimization (p. 542). Wiley. Tsatsaronis, G. (2011). Exergoeconomics and exergoenvironmental analysis. In B. R. Bakshi, D. P. Sekulić, & T. G. Gutowski (Eds.), Thermodynamics and the destruction of resources (pp. 377–401). Cambridge University Press. Lemmon, E. W., Bell, I. H., Huber, M. L., McLinden, M. O. (2018). Reference fluid thermodynamic and transport properties database (REFPROP). National Institute of Standards and Technology, NIST Standard Reference Database 23. Version 10.0.