Threefolds with big and nef anticanonical bundles II

Central European Journal of Mathematics - Tập 9 - Trang 449-488 - 2011
Priska Jahnke1, Thomas Peternell2, Ivo Radloff2
1Mathematisches Institut, Freie Universität Berlin, Berlin, Germany
2Mathematisches Institut, Universität Bayreuth, Bayreuth, Germany

Tóm tắt

In a follow-up to our paper [Threefolds with big and nef anticanonical bundles I, Math. Ann., 2005, 333(3), 569–631], we classify smooth complex projective threefolds Xwith −K X big and nef but not ample, Picard number γ(X) = 2, and whose anticanonical map is small. We assume also that the Mori contraction of X and of its flop X + are not both birational.

Tài liệu tham khảo

Arbarello E., Cornalba M., Griffiths P.A., Harris J., Geometry of Algebraic Curves, Grundlehren Math. Wiss., 267, Springer, New York, 1985 Bertini E., Introduzione alla Geometria Proiettiva degli Iperspazi, Enrico Spoerri, Pisa, 1907 Chel’tsov I.A., Bounded three-dimensional Fano varieties of integer index, Math. Notes, 1999, 66(3), 360–365 Hartshorne R., On the classification of algebraic space curves II, In: Algebraic Geometry, Brunswick, 1985, Proc. Sympos. Pure Math., 46(1), AMS, Providence, 1987, 145–164 Iskovskikh V.A., Double projection from a line onto Fano threefolds of the first kind, Math. USSR-Sb., 1990, 66(1), 265–284 Iskovskikh V.A., Prokhorov Yu.G., Fano Varieties, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999 Jahnke P., Peternell T., Almost del Pezzo manifolds, Adv. Geom., 2008, 8(3), 387–411 Jahnke P., Peternell T., Radloff I., Threefolds with big and nef anticanonical bundles I, Math. Ann., 2005, 333(3), 569–631 Jahnke P., Radloff I., Gorenstein Fano threefolds with base points in the anticanonical system. Compos. Math., 2006, 142(2), 422–432 Jahnke P., Radloff I., Terminal Fano threefolds and their smoothings, Math. Z. (in press), DOI: 10.1007/s00209-010-0780-8 Kollár J., Flops, Nagoya Math. J., 1989, 113, 15–36 Kollár J., Flips, flops, minimal models, etc., In: Surv. Differ. Geom., 1, Lehigh University, Bethlehem, 1991, 113–199 Kollár J., Mori S., Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math., 134, Cambridge University Press, Cambridge, 1998 Mori S., Threefolds whose canonical bundles are not numerically effective, Ann. of Math., 1982, 116(1), 133–176 Namikawa Y., Smoothing Fano 3-folds. J. Algebraic Geom., 1997, 6(2), 307–324 Przhyjalkowski V.V., Cheltsov I.A., Shramov K.A., Hyperelliptic and trigonal Fano threefolds, Izv. Math., 2005, 69(2), 365–421 Reid M., Minimal models of canonical 3-folds, In: Algebraic Varieties and Analytic Varieties, Tokyo, 1981, Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1983, 131–180 Shin K.-H., 3-dimensional Fano varieties with canonical singularities. Tokyo J. Math., 1989, 12(2), 375–385 Takeuchi K., Some birational maps of Fano 3-folds, Compos. Math., 1989, 71(3), 265–283