Bio-inspired Nanocomposite Membranes for Osmotic Energy Harvesting

Joule - Tập 4 - Trang 247-261 - 2020
Cheng Chen1, Dan Liu1, Li He2,3, Si Qin1, Jiemin Wang1, Joselito M. Razal1, Nicholas A. Kotov2,4,5,6, Weiwei Lei1
1Institute for Frontier Materials, Deakin University, Locked Bag 2000, Geelong, VIC 3220, Australia
2Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
3School of Chemistry, Beihang University, 37 Xueyuan Road, Beijing 100191, China
4Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
5Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
6Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA

Tài liệu tham khảo

Logan, 2012, Membrane-based processes for sustainable power generation using water, Nature, 488, 313, 10.1038/nature11477 Ramon, 2011, Membrane-based production of salinity-gradient power, Energy Environ. Sci., 4, 4423, 10.1039/c1ee01913a Cusick, 2012, Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells, Science, 335, 1474, 10.1126/science.1219330 Yang, 2017, Solar-driven simultaneous steam production and electricity generation from salinity, Energy Environ. Sci., 10, 1923, 10.1039/C7EE01804E Yip, 2011, Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients, Environ. Sci. Technol., 45, 4360, 10.1021/es104325z Lee, 2011, A review of reverse osmosis membrane materials for desalination—development to date and future potential, J. Membr. Sci., 370, 1, 10.1016/j.memsci.2010.12.036 Chou, 2012, Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density, J. Membr. Sci., 389, 25, 10.1016/j.memsci.2011.10.002 Veerman, 2010, Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant, Environ. Sci. Technol., 44, 9207, 10.1021/es1009345 Veerman, 2011, Reverse electrodialysis: a validated process model for design and optimization, Chem. Eng. J., 166, 256, 10.1016/j.cej.2010.10.071 Tung, 2015, A dendrite-suppressing composite ion conductor from aramid nanofibres, Nat. Commun., 6, 6152, 10.1038/ncomms7152 Cheng, 2017, Electrokinetic energy conversion in self-assembled 2D nanofluidic channels with Janus nanobuilding blocks, Adv. Mater., 29, 1700177, 10.1002/adma.201700177 Raidongia, 2012, Nanofluidic ion transport through reconstructed layered materials, J. Am. Chem. Soc., 134, 16528, 10.1021/ja308167f Guo, 2013, Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane, Adv. Mater., 25, 6064, 10.1002/adma.201302441 Feng, 2016, Single-layer MoS2 nanopores as nanopower generators, Nature, 536, 197, 10.1038/nature18593 Schoch, 2008, Transport phenomena in nanofluidics, Rev. Mod. Phys., 80, 839, 10.1103/RevModPhys.80.839 Daiguji, 2004, Ion transport in nanofluidic channels, Nano Letters, 4, 137, 10.1021/nl0348185 Stankovich, 2010, Systematic post-assembly modification of graphene oxide paper with primary alkylamines, Chem. Mater., 22, 4153, 10.1021/cm100454g Yeh, 2014, On the origin of the stability of graphene oxide membranes in water, Nat. Chem., 7, 166, 10.1038/nchem.2145 Zhi, 2009, Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties, Adv. Mater., 21, 2889, 10.1002/adma.200900323 Watanabe, 2004, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater., 3, 404, 10.1038/nmat1134 Yang, 2013, Epitaxial growth of single-domain graphene on hexagonal boron nitride, Nat. Mater., 12, 792, 10.1038/nmat3695 Chen, 2018, Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation, Nat. Commun., 9, 1902, 10.1038/s41467-018-04294-6 Chen, 2018, Functionalized boron nitride membranes with multipurpose and super-stable semi-permeability in solvents, J. Mater. Chem. A, 6, 21104, 10.1039/C8TA06161K Qin, 2017, High and stable ionic conductivity in 2D nanofluidic ion channels between boron nitride layers, J. Am. Chem. Soc., 139, 6314, 10.1021/jacs.6b11100 Qin, 2018, Nanofluidic electric generators constructed from boron nitride nanosheet membranes, Nano Energy, 47, 368, 10.1016/j.nanoen.2018.03.030 LaVan, 2006, Approaches for biological and biomimetic energy conversion, Proc. Natl. Acad. Sci. USA, 103, 5251, 10.1073/pnas.0506694103 Xu, 2008, Designing artificial cells to harness the biological ion concentration gradient, Nat. Nanotechnol., 3, 666, 10.1038/nnano.2008.274 Munch, 2008, Tough, bio-inspired hybrid materials, Science, 322, 1516, 10.1126/science.1164865 Egan, 2015, The role of mechanics in biological and bio-inspired systems, Nat. Commun., 6, 7418, 10.1038/ncomms8418 Gao, 2017, Mass production of bulk artificial nacre with excellent mechanical properties, Nat. Commun., 8, 287, 10.1038/s41467-017-00392-z Mao, 2016, Synthetic nacre by predesigned matrix-directed mineralization, Science, 354, 107, 10.1126/science.aaf8991 Srivastava, 2008, Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires, Acc. Chem. Res., 41, 1831, 10.1021/ar8001377 Yeom, 2017, Abiotic tooth enamel, Nature, 543, 95, 10.1038/nature21410 Mamedov, 2000, Stratified assemblies of magnetite nanoparticles and montmorillonite prepared by the layer-by-layer assembly, Langmuir, 16, 3941, 10.1021/la990957j Decher, 1997, Fuzzy nanoassemblies: toward layered polymeric multicomposites, Science, 277, 1232, 10.1126/science.277.5330.1232 Mamedov, 2000, Free-standing layer-by-layer assembled films of magnetite nanoparticles, Langmuir, 16, 5530, 10.1021/la000560b Jiang, 2006, Freestanding nanostructures via layer-by-layer assembly, Adv. Mater., 18, 829, 10.1002/adma.200502444 Ono, 2006, Preparation of ultrathin self-standing polyelectrolyte multilayer membranes at physiological conditions using pH-responsive film segments as sacrificial layers, Nano Lett., 6, 592, 10.1021/nl0515504 Lei, 2015, Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization, Nat. Commun., 6, 8849, 10.1038/ncomms9849 Geick, 1966, Normal modes in hexagonal boron nitride, Phys. Rev., 146, 543, 10.1103/PhysRev.146.543 Shi, 2010, Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition, Nano Lett., 10, 4134, 10.1021/nl1023707 Yang, 2011, Dispersions of aramid nanofibers: a new nanoscale building block, ACS Nano, 5, 6945, 10.1021/nn2014003 Jain, 2000, Kevlar 49 fibres: thermal expansion coefficients from high temperature X-ray data, Curr. Sci., 78, 331 Kotov, 2017, Self-assembly of inorganic nanoparticles: ab ovo, EPL, 119, 66008, 10.1209/0295-5075/119/66008 Wu, 2017, BN nanosheet/polymer films with highly anisotropic thermal conductivity for thermal management applications, ACS Appl. Mater. Interfaces, 9, 43163, 10.1021/acsami.7b15264 Podsiadlo, 2007, Ultrastrong and stiff layered polymer nanocomposites, Science, 318, 80, 10.1126/science.1143176 Shim, 2017, 2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries, Energy Environ. Sci., 10, 1911, 10.1039/C7EE01095H Lee, 2015, Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling, Nano Lett., 15, 1238, 10.1021/nl504397h Guiney, 2018, Three-dimensional printing of cytocompatible, thermally conductive hexagonal boron nitride nanocomposites, Nano Lett., 18, 3488, 10.1021/acs.nanolett.8b00555 Jing, 2017, Biocompatible hydroxylated boron nitride nanosheets/poly(vinyl alcohol) interpenetrating hydrogels with enhanced mechanical and thermal responses, ACS Nano, 11, 3742, 10.1021/acsnano.6b08408 Liu, 2016, Electrical, mechanical, and capacity percolation leads to high-performance MoS2/nanotube composite lithium ion battery electrodes, ACS Nano, 10, 5980, 10.1021/acsnano.6b01505 Gong, 2015, Thickness dependence of the mechanical properties of free-standing graphene oxide papers, Adv. Funct. Mater., 25, 3756, 10.1002/adfm.201500998 Park, 2008, Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking, ACS Nano, 2, 572, 10.1021/nn700349a Tang, 2003, Nanostructured artificial nacre, Nat. Mater., 2, 413, 10.1038/nmat906 Chen, 2008, Mechanically strong, electrically conductive, and biocompatible graphene paper, Adv. Mater., 20, 3557, 10.1002/adma.200800757 Chen, 2009, Self-assembled free-standing graphite oxide membrane, Adv. Mater., 21, 3007, 10.1002/adma.200803726 Lyu, 2016, High strength conductive composites with plasmonic nanoparticles aligned on aramid nanofibers, Adv. Funct. Mater., 26, 8435, 10.1002/adfm.201603230 Wu, 2014, Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties, J. Membr. Sci., 465, 78, 10.1016/j.memsci.2014.04.023 Zhu, 2018, Unique ion rectification in hypersaline environment: a high-performance and sustainable power generator system, Sci. Adv., 4, eaau1665, 10.1126/sciadv.aau1665 Koktysh, 2002, Biomaterials by design: layer-by-layer assembled ion-selective and biocompatible films of TiO2 nanoshells for neurochemical monitoring, Adv. Funct. Mater., 12, 255, 10.1002/1616-3028(20020418)12:4<255::AID-ADFM255>3.0.CO;2-1 Veerman, 2009, Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water, J. Membr. Sci., 327, 136, 10.1016/j.memsci.2008.11.015 Veerman, 2009, Reverse electrodialysis: comparison of six commercial membrane pairs on the thermodynamic efficiency and power density, J. Membr. Sci., 343, 7, 10.1016/j.memsci.2009.05.047 Zhang, 2019, Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators, Nat. Commun., 10, 2920, 10.1038/s41467-019-10885-8 Mei, 2018, Recent developments and future perspectives of reverse electrodialysis technology: a review, Desalination, 425, 156, 10.1016/j.desal.2017.10.021 Ji, 2017, Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs, Adv. Funct. Mater., 27, 1603623, 10.1002/adfm.201603623 Siria, 2013, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, 494, 455, 10.1038/nature11876 Gao, 2014, High-performance ionic diode membrane for salinity gradient power generation, J. Am. Chem. Soc., 136, 12265, 10.1021/ja503692z Kim, 2010, Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels, Microfluid. Nanofluid., 9, 1215, 10.1007/s10404-010-0641-0 Guo, 2010, Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source, Adv. Funct. Mater., 20, 1339, 10.1002/adfm.200902312 Zhang, 2017, Conical nanopores for efficient ion pumping and desalination, J. Phys. Chem. Lett., 8, 2842, 10.1021/acs.jpclett.7b01137 Xue, 2017, Water-evaporation-induced electricity with nanostructured carbon materials, Nat. Nanotechnol., 12, 317, 10.1038/nnano.2016.300 Straub, 2016, Pressure-retarded osmosis for power generation from salinity gradients: is it viable?, Energy Environ. Sci., 9, 31, 10.1039/C5EE02985F Krogman, 2009, Spraying asymmetry into functional membranes layer-by-layer, Nat. Mater., 8, 512, 10.1038/nmat2430