Bio-inspired Nanocomposite Membranes for Osmotic Energy Harvesting
Tài liệu tham khảo
Logan, 2012, Membrane-based processes for sustainable power generation using water, Nature, 488, 313, 10.1038/nature11477
Ramon, 2011, Membrane-based production of salinity-gradient power, Energy Environ. Sci., 4, 4423, 10.1039/c1ee01913a
Cusick, 2012, Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells, Science, 335, 1474, 10.1126/science.1219330
Yang, 2017, Solar-driven simultaneous steam production and electricity generation from salinity, Energy Environ. Sci., 10, 1923, 10.1039/C7EE01804E
Yip, 2011, Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients, Environ. Sci. Technol., 45, 4360, 10.1021/es104325z
Lee, 2011, A review of reverse osmosis membrane materials for desalination—development to date and future potential, J. Membr. Sci., 370, 1, 10.1016/j.memsci.2010.12.036
Chou, 2012, Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density, J. Membr. Sci., 389, 25, 10.1016/j.memsci.2011.10.002
Veerman, 2010, Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant, Environ. Sci. Technol., 44, 9207, 10.1021/es1009345
Veerman, 2011, Reverse electrodialysis: a validated process model for design and optimization, Chem. Eng. J., 166, 256, 10.1016/j.cej.2010.10.071
Tung, 2015, A dendrite-suppressing composite ion conductor from aramid nanofibres, Nat. Commun., 6, 6152, 10.1038/ncomms7152
Cheng, 2017, Electrokinetic energy conversion in self-assembled 2D nanofluidic channels with Janus nanobuilding blocks, Adv. Mater., 29, 1700177, 10.1002/adma.201700177
Raidongia, 2012, Nanofluidic ion transport through reconstructed layered materials, J. Am. Chem. Soc., 134, 16528, 10.1021/ja308167f
Guo, 2013, Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane, Adv. Mater., 25, 6064, 10.1002/adma.201302441
Feng, 2016, Single-layer MoS2 nanopores as nanopower generators, Nature, 536, 197, 10.1038/nature18593
Schoch, 2008, Transport phenomena in nanofluidics, Rev. Mod. Phys., 80, 839, 10.1103/RevModPhys.80.839
Daiguji, 2004, Ion transport in nanofluidic channels, Nano Letters, 4, 137, 10.1021/nl0348185
Stankovich, 2010, Systematic post-assembly modification of graphene oxide paper with primary alkylamines, Chem. Mater., 22, 4153, 10.1021/cm100454g
Yeh, 2014, On the origin of the stability of graphene oxide membranes in water, Nat. Chem., 7, 166, 10.1038/nchem.2145
Zhi, 2009, Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties, Adv. Mater., 21, 2889, 10.1002/adma.200900323
Watanabe, 2004, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater., 3, 404, 10.1038/nmat1134
Yang, 2013, Epitaxial growth of single-domain graphene on hexagonal boron nitride, Nat. Mater., 12, 792, 10.1038/nmat3695
Chen, 2018, Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation, Nat. Commun., 9, 1902, 10.1038/s41467-018-04294-6
Chen, 2018, Functionalized boron nitride membranes with multipurpose and super-stable semi-permeability in solvents, J. Mater. Chem. A, 6, 21104, 10.1039/C8TA06161K
Qin, 2017, High and stable ionic conductivity in 2D nanofluidic ion channels between boron nitride layers, J. Am. Chem. Soc., 139, 6314, 10.1021/jacs.6b11100
Qin, 2018, Nanofluidic electric generators constructed from boron nitride nanosheet membranes, Nano Energy, 47, 368, 10.1016/j.nanoen.2018.03.030
LaVan, 2006, Approaches for biological and biomimetic energy conversion, Proc. Natl. Acad. Sci. USA, 103, 5251, 10.1073/pnas.0506694103
Xu, 2008, Designing artificial cells to harness the biological ion concentration gradient, Nat. Nanotechnol., 3, 666, 10.1038/nnano.2008.274
Munch, 2008, Tough, bio-inspired hybrid materials, Science, 322, 1516, 10.1126/science.1164865
Egan, 2015, The role of mechanics in biological and bio-inspired systems, Nat. Commun., 6, 7418, 10.1038/ncomms8418
Gao, 2017, Mass production of bulk artificial nacre with excellent mechanical properties, Nat. Commun., 8, 287, 10.1038/s41467-017-00392-z
Mao, 2016, Synthetic nacre by predesigned matrix-directed mineralization, Science, 354, 107, 10.1126/science.aaf8991
Srivastava, 2008, Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires, Acc. Chem. Res., 41, 1831, 10.1021/ar8001377
Yeom, 2017, Abiotic tooth enamel, Nature, 543, 95, 10.1038/nature21410
Mamedov, 2000, Stratified assemblies of magnetite nanoparticles and montmorillonite prepared by the layer-by-layer assembly, Langmuir, 16, 3941, 10.1021/la990957j
Decher, 1997, Fuzzy nanoassemblies: toward layered polymeric multicomposites, Science, 277, 1232, 10.1126/science.277.5330.1232
Mamedov, 2000, Free-standing layer-by-layer assembled films of magnetite nanoparticles, Langmuir, 16, 5530, 10.1021/la000560b
Jiang, 2006, Freestanding nanostructures via layer-by-layer assembly, Adv. Mater., 18, 829, 10.1002/adma.200502444
Ono, 2006, Preparation of ultrathin self-standing polyelectrolyte multilayer membranes at physiological conditions using pH-responsive film segments as sacrificial layers, Nano Lett., 6, 592, 10.1021/nl0515504
Lei, 2015, Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization, Nat. Commun., 6, 8849, 10.1038/ncomms9849
Geick, 1966, Normal modes in hexagonal boron nitride, Phys. Rev., 146, 543, 10.1103/PhysRev.146.543
Shi, 2010, Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition, Nano Lett., 10, 4134, 10.1021/nl1023707
Yang, 2011, Dispersions of aramid nanofibers: a new nanoscale building block, ACS Nano, 5, 6945, 10.1021/nn2014003
Jain, 2000, Kevlar 49 fibres: thermal expansion coefficients from high temperature X-ray data, Curr. Sci., 78, 331
Kotov, 2017, Self-assembly of inorganic nanoparticles: ab ovo, EPL, 119, 66008, 10.1209/0295-5075/119/66008
Wu, 2017, BN nanosheet/polymer films with highly anisotropic thermal conductivity for thermal management applications, ACS Appl. Mater. Interfaces, 9, 43163, 10.1021/acsami.7b15264
Podsiadlo, 2007, Ultrastrong and stiff layered polymer nanocomposites, Science, 318, 80, 10.1126/science.1143176
Shim, 2017, 2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries, Energy Environ. Sci., 10, 1911, 10.1039/C7EE01095H
Lee, 2015, Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling, Nano Lett., 15, 1238, 10.1021/nl504397h
Guiney, 2018, Three-dimensional printing of cytocompatible, thermally conductive hexagonal boron nitride nanocomposites, Nano Lett., 18, 3488, 10.1021/acs.nanolett.8b00555
Jing, 2017, Biocompatible hydroxylated boron nitride nanosheets/poly(vinyl alcohol) interpenetrating hydrogels with enhanced mechanical and thermal responses, ACS Nano, 11, 3742, 10.1021/acsnano.6b08408
Liu, 2016, Electrical, mechanical, and capacity percolation leads to high-performance MoS2/nanotube composite lithium ion battery electrodes, ACS Nano, 10, 5980, 10.1021/acsnano.6b01505
Gong, 2015, Thickness dependence of the mechanical properties of free-standing graphene oxide papers, Adv. Funct. Mater., 25, 3756, 10.1002/adfm.201500998
Park, 2008, Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking, ACS Nano, 2, 572, 10.1021/nn700349a
Tang, 2003, Nanostructured artificial nacre, Nat. Mater., 2, 413, 10.1038/nmat906
Chen, 2008, Mechanically strong, electrically conductive, and biocompatible graphene paper, Adv. Mater., 20, 3557, 10.1002/adma.200800757
Chen, 2009, Self-assembled free-standing graphite oxide membrane, Adv. Mater., 21, 3007, 10.1002/adma.200803726
Lyu, 2016, High strength conductive composites with plasmonic nanoparticles aligned on aramid nanofibers, Adv. Funct. Mater., 26, 8435, 10.1002/adfm.201603230
Wu, 2014, Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties, J. Membr. Sci., 465, 78, 10.1016/j.memsci.2014.04.023
Zhu, 2018, Unique ion rectification in hypersaline environment: a high-performance and sustainable power generator system, Sci. Adv., 4, eaau1665, 10.1126/sciadv.aau1665
Koktysh, 2002, Biomaterials by design: layer-by-layer assembled ion-selective and biocompatible films of TiO2 nanoshells for neurochemical monitoring, Adv. Funct. Mater., 12, 255, 10.1002/1616-3028(20020418)12:4<255::AID-ADFM255>3.0.CO;2-1
Veerman, 2009, Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water, J. Membr. Sci., 327, 136, 10.1016/j.memsci.2008.11.015
Veerman, 2009, Reverse electrodialysis: comparison of six commercial membrane pairs on the thermodynamic efficiency and power density, J. Membr. Sci., 343, 7, 10.1016/j.memsci.2009.05.047
Zhang, 2019, Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators, Nat. Commun., 10, 2920, 10.1038/s41467-019-10885-8
Mei, 2018, Recent developments and future perspectives of reverse electrodialysis technology: a review, Desalination, 425, 156, 10.1016/j.desal.2017.10.021
Ji, 2017, Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs, Adv. Funct. Mater., 27, 1603623, 10.1002/adfm.201603623
Siria, 2013, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, 494, 455, 10.1038/nature11876
Gao, 2014, High-performance ionic diode membrane for salinity gradient power generation, J. Am. Chem. Soc., 136, 12265, 10.1021/ja503692z
Kim, 2010, Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels, Microfluid. Nanofluid., 9, 1215, 10.1007/s10404-010-0641-0
Guo, 2010, Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source, Adv. Funct. Mater., 20, 1339, 10.1002/adfm.200902312
Zhang, 2017, Conical nanopores for efficient ion pumping and desalination, J. Phys. Chem. Lett., 8, 2842, 10.1021/acs.jpclett.7b01137
Xue, 2017, Water-evaporation-induced electricity with nanostructured carbon materials, Nat. Nanotechnol., 12, 317, 10.1038/nnano.2016.300
Straub, 2016, Pressure-retarded osmosis for power generation from salinity gradients: is it viable?, Energy Environ. Sci., 9, 31, 10.1039/C5EE02985F
Krogman, 2009, Spraying asymmetry into functional membranes layer-by-layer, Nat. Mater., 8, 512, 10.1038/nmat2430